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Abstract

Recent years have seen rapid growth in machine learning algorithms for protein de-
sign. Among them, protein sequence optimization methods to maximize molecular
functionality can significantly impact many industries. However, as shown in this
study, most existing methods are data-hungry: they tend to be low-performant when
available training data is scarce (i.e., in a low-N regime), which is often the case in
practical protein engineering scenarios. In response, here we examine the extreme
case: what if we have no training data? To answer, we propose a fully unsuper-
vised sequence optimization pipeline named EvoOpt that leverages evolutionary
information provided by multiple sequence alignments (MSAs) and the generative
power of MSA Transformer, a protein language model (PLM) that takes an MSA
as input. The extensive evaluation herein demonstrates that EvoOpt outperforms or
is on par with the existing supervised methods even in relatively high-N regimes.
We also report that the optimization performance with MSA Transformer is almost
equivalent to or superior to that with a PLM that takes a single sequence as input,
such as ESM-1b or ESM2 of far more model parameters. These results indicate the
advantage of using an MSA to guide an algorithm toward promising candidates in
the search space, directly exploiting evolutionary information.

1 Introduction

Recently, designing highly functional proteins is gaining much attention as the industries like antibody
therapeutics or biomanufacturing proliferate. In particular, directed evolution [1] is a standard
experimental approach that improves a natural protein’s molecular function, or fitness, by iterative
mutation and selection of better candidates. Because wet experiments are often labor-intensive
and financially costly, machine learning-based maximization of protein functions, or sequence
optimization, is emerging as a promising in silico alternative.

Current sequence optimization algorithms are based on supervised learning, even though they take
different approaches, such as Bayesian optimization [2], generative models [3, 4], evolutionary
strategy [5], reinforcement learning [6], and more. However, the training data provided to an
algorithm is not always large enough: for example, measuring enzyme activity typically requires
chromatography-based assays whose throughput is about 100 samples under a standard laboratory
resource. Thus, we are challenged to build a sequence optimization algorithm that performs well for
practical use cases even when the training data is scarce.
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To this end, here we propose a fully unsupervised method named EvoOpt that we hope serves as
a baseline for the problem. EvoOpt is a pipelined method that leverages evolutionary information
contained in multiple sequence alignments (MSAs) by exploiting the generative power of MSA
Transformer [7], a protein language model (PLM) that takes an MSA as input, and the ability of a
PLM to predict a protein’s fitness without training data (i.e., zero-shot prediction [8]). The present
work is partially motivated by the recent findings on the generative nature of PLMs that they can
potentially generate a wild-type like [9] or even far better variants [10] because they can model
the fitness landscapes well [11]. Our extensive evaluation of nine supervised methods over three
large-scale protein engineering experiments demonstrates that our unsupervised method outperforms
or is on par with the supervised methods even when a relatively rich amount of training data is
available.

In addition, to clarify the effect of directly setting an evolutionary context with an MSA on generating
sequences, we also examined the optimization performances of our pipeline when replacing MSA
Transformer with ESM-1b [12] or ESM2 [13] that takes a single sequence instead of an MSA. The
key observation here is that the MSA Transformer’s optimization performance in the pipeline is
equivalent to or superior to the single-sequence PLMs, even though they have up to 150-fold more
model parameters. The overall results highlight the effectiveness of using an MSA to provide a
sequence generation or optimization algorithm with explicit evolutionary information.

2 Methods

2.1 EvoOpt pipeline

To establish an extremely low-N baseline, we propose a fully unsupervised, three-stage pipeline for
protein sequence optimization (Figure 1). In the first stage, we perform a homology search to build
an MSA, in which we query an optimization target sequence against a large-scale protein database
such as Uniclust [14] via HHblits [15]. To refine the obtained MSA, we filtered out the sequences
with more than 30% gaps in the mutated region of the target protein. Furthermore, because too
many mutations can lead to high-cost sequence synthesis in lab experiments [16], we selected 128
sequences from the filtered MSA, greedily minimizing the Hamming distances between them starting
from the target protein. The preprocessing is also beneficial as it enables faster inference. Then, in
the second stage, we generate multiple sequences using MSA Transformer as the generator. Here,
we first corrupt the original MSA by masking randomly selected amino acids and then perform
maximum likelihood estimation to restore the corrupted tokens based on the inferred logits by MSA
Transformer, and again we mask the restored MSA to repeat the cycle for specified times. Through its
column-wise attention mechanism, MSA Transformer can learn the evolutionary dependence between
inter-sequence amino acids on diverse protein families via masked language modeling [17]. Thus, we
expect the output sequence in this stage to have higher protein-likeliness, hopefully leading to better
fitness. We note that the output sequences are those restored from the target protein, not from the
homologs in the input MSA: the homologs are just used as an “evolutionary context” in our method.
Finally, in the third stage, we rank the generated sequences by zero-shot fitness prediction using
ESM-1b and output the top-ranked proteins as our proposal. In short, EvoOpt generates evolutionarily
preferable sequences without needing supervised learning or even fine-tuning.

Figure 1: Overall structure of the EvoOpt pipeline.
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Table 1: Summary of the protein engineering tasks. “Distance” is the Levenshtein distance between a
variant sequence and the corresponding wild-type sequence.

Protein Wild-type
length #Variants Avg. distance

to wild type
Max. distance
to wild type

GFP [20] 237 56,086 4.64 16
AAV [21] 735 284,009 12.3 39
IGPD [22] 220 496,137 6.96 28

2.2 Evaluation setting

For our benchmarking, we sourced the protein engineering data obtained by wet-lab experiments from
the well-curated datasets FLIP [18] and ProteinGym [19]. To allow the algorithms to explore board
regions in fitness landscapes, we extracted the large-scale experiments, including more than 10,000
samples with more than double mutations. By doing so, we were left with three tasks (Table 1): green
fluorescent protein (GFP) [20], adeno-associated virus (AAV) capsid [21], and imidazoleglycerol-
phosphate dehydratase (IGPD) [22]. IGPD is suitable for our benchmarking because high-throughput
experiments are possible for this enzyme.

To evaluate the fitness for every possible sequence proposed by an optimization algorithm, we trained
separate 2-layer MLP predictors on top of the frozen ESM-1b encoder for AAV and IGPD tasks. Note
that these predictors are just used as the surrogates for the wet-lab experiments in our benchmarking,
not a part of an optimization algorithm: using a trained predictor as such has been done in a previous
benchmarking [23], and we followed the setup as well. We split a whole mutational dataset into
train/valid/test with the ratio 8:1:1 and only used train/valid sets for training. For the GFP task,
we used the pre-trained model provided by the design-bench suite [23]. The prediction accuracies
(Spearman’s correlation coefficient) of each model on the respective holdout set were 0.84 for GFP,
0.91 for AAV, and 0.80 for IGPD.

We compared EvoOpt with nine supervised methods with diverse approaches (Table 2). We used
the model implementations and the evaluation suite provided in design-baselines [25]. All the
hyperparameters were the default ones. In this work, we consider the single-round optimization
problem: given a training dataset, we train a model (in cases other than EvoOpt) and output a set
of sequences. For each task, a single supervised algorithm is given training data with the ground-
truth fitness ranging from 50 to 60 percentile in the whole dataset, consistent with the setting in a
recent extensive benchmarking [23]. It is worth mentioning that this also emulates a realistic protein
engineering situation where we only have rather low-performant molecules and are inaccessible to the
higher-fitness variants a priori. To examine both low-N and high-N scenarios, we gradually varied
the number of training data provided with an algorithm from 32 to 1,024.

Table 2: Summary of the supervised sequence optimization algorithms.

Algorithm Approach

Autofocused-CbAS [4] Generative model
CbAS [3] Generative model
BO-qEI [2] Bayesian optimization
CMA-ES [5] Evolutionary strategy
Gradient-ascent [23] Gradient-based
Gradient-ascent-min-ensemble [23] Gradient-based
Gradient-ascent-mean-ensemble [23] Gradient-based
MINS [24] Inverse mapping
REINFORCE [6] Reinforcement learning
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Figure 2: Evaluation results with the varying number of training samples. The red horizontal lines
denote EvoOpt’s results. The fitness values in each task were normalized to compare the performances
across tasks. We report the average normalized fitness values in 16 trials with different random
seeds for each setting. CMA-ES results in the AAV task for #training data > 32 are missing because
the training did not finish within a computation limit (24 hours). The resultant negative fitness of
gradient-ascent method was clipped to 0.0.

3 Results

3.1 Effectiveness of MSA-guided unsupervised sequence optimization

Despite being unsupervised, our method outperformed or was on par with all the other supervised
methods (Figure 2). The relatively low performances of the supervised methods suggest that the
algorithms searched only the neighbor region around the low-performing training data, which is
consistent with the recent finding that the sequence search space can be regulated by the training
data compositions [26]. Also, with scarce data, it would be difficult for a supervised algorithm to
learn the general properties of proteins required to guess how a generated sequence is of high fitness.
In contrast, thanks to the pre-training across diverse families, MSA Transformer could leverage the
general knowledge of proteins, leading to the generation of highly probable sequences found in an
evolutionarily conditioned area by the input MSA in the search space.

3.2 Comparison between single sequence-input PLMs and MSA Transformer as generators

A recent study [27] revealed that MSA Transformer’s representation power is in general similar to
ESM-1b as measured in zero-shot fitness prediction accuracy. Besides, a PLM’s performance is
demonstrated to improve with an increasing number of model parameters [13]. Then, how about
the generative power of PLMs? In this respect, we examined the optimization performance of our
pipeline when using a single sequence-input PLM as the generator, where we considered ESM-1b
and ESM2 instead of MSA Transformer. For this purpose, we did not perform homology search and
just input a wild-type sequence to these models. ESM2 is the largest Transformer-based PLM ever
with 15B parameters, which is 150 times larger than MSA Transformer.

As summarized in Table 3, we found that the performances of MSA Transformer compared with the
other two PLMs were significantly better or comparable in two (GFP and AAV) of three engineering
tasks and slightly worse in the IGPD task. To our surprise, ESM2 performed comparably to MSA
Transformer in the AAV task but worked poorly in the other two tasks.

4 Discussion

In the present work, we proposed a fully unsupervised, pipelined algorithm for sequence optimization
to tackle the data scarcity problem we usually encounter in practical protein engineering. The
extensive benchmarking demonstrated the advantage of using an MSA to guide the algorithm toward
promising candidates in the search space, directly exploiting evolutionary information. One of the
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Table 3: Comparison between MSA Transformer, ESM-1b, and ESM2 as generators in the proposed
pipeline. “Performance” indicates the normalized realized fitness values in each task. We report the
average ± standard deviations for eight trials with different random seeds. The bold letters indicate
the best average performances.

Generator #Params Input
Performance

GFP AAV IGPD

MSA Transformer 100M MSA 0.865±0.000 0.718±0.000 0.610±0.019
ESM-1b 650M Single sequence 0.330±0.279 0.697±0.014 0.697±0.051
ESM2 15B Single sequence 0.445±0.325 0.712±0.008 0.325±0.145

good use cases of our simple but effective method would be to automatically determine the initial
amino acid positions to be mutated for directed evolution, which is often empirically done by relying
on the biological knowledge of a target protein. We believe EvoOpt would give us far more reasonable
guesses than completely random choices, as done in the widely used error-prone PCR method. As
shown in Figure 2, EvoOpt could not reach the perfect performance (y=1.0) in any of the three tasks,
which means there exist some variants that cannot be realized by relying only on the natural protein
information. Thus, it would be interesting to extend the current work to the active learning setting in
which we use the retrieved samples to train predictive and generative models.
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