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Abstract

Designing proteins to achieve specific functions often requires in silico modeling
of their properties at high throughput scale and can significantly benefit from
fast and accurate protein structure prediction. We introduce EquiFold, a new
end-to-end differentiable, SE(3)-equivariant, all-atom protein structure prediction
model. EquiFold uses a novel coarse-grained representation of protein structures
that does not require multiple sequence alignments or protein language model
embeddings, inputs that are commonly used in other state-of-the-art structure
prediction models. Our method relies on geometrical structure representation and
is substantially smaller than prior state-of-the-art models. In preliminary studies,
EquiFold achieved comparable accuracy to AlphaFold but was orders of magnitude
faster. The combination of high speed and accuracy make EquiFold suitable for a
number of downstream tasks, including protein property prediction and design.

1 Introduction

Recent studies using deep neural networks to predict protein structure [[L 2} 13} 4} 5] have accelerated
the development of structure-based methods for protein property prediction and design. However,
some models tend to predict one or few conformations that may not be optimal for properties of
interest, such as ligand-binding pockets [6] and protein-protein interfaces [7, 8l 9]. Moreover, these
models require either multiple sequence alignments (MSA), protein language model embeddings, or
other statistical information distilled from large sequence databases. While complex inputs such as
embeddings and MSAs have proven useful for structure prediction, they increase the complexity of
properly testing these methods, require significant time to derive, and often scale poorly with respect
to sequence library size, and thus may overall limit downstream use. Conversely, the physics of
protein dynamics and interactions do not depend directly on these inputs.

Here, we introduce EquiFold, a novel representation of protein structures and an end-to-end differen-
tiable, SE(3)-equivariant neural network that predicts a protein structure given its primary sequence
via iterative refinement. EquiFold makes atomically accurate predictions for de novo designed mini-
proteins with in silico predicted structures [[L0] and on experimental antibody structures from the
Protein Data Bank [11]. We focus on this set because small structures (e.g., designed mini-proteins)
and flexible loops (e.g., the CDR-H3 loop of IgG based antibodies) have proven to be as difficult to
predict as larger structures in recent tests of state-of-the-art methods [[12} [13}[14]. The model relies
solely on geometrical structure representation and can readily incorporate various energy functions as
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physical priors, which we hypothesize to be instrumental in exploring conformational landscapes
towards predicting properties of interest.

2 Related Work

AlphaFold [1] and similar models [2| 3| 4] have been successful at protein structure prediction, by
representing the geometry of the chain of backbone atoms as a set of nodes paired with Euclidean
transformations and using an iterative refinement procedure that updates the transformations per each
block of the structure module. In these models, side-chain geometries are implicitly modeled until
they are predicted as a series of torsion angles by the module’s final block. However, such implicit
modeling of side-chains may make it difficult to model their atoms’ placements and interactions in 3D
space. For example, to avoid steric clashes, such models must learn from data complex distributions
in the high dimensional space of torsion angles that span multiple residues. In contrast, models that
represent side-chain degrees of freedom explicitly in 3D would likely need to learn substantially
simpler distributions to achieve the same goal.

Coarse-grained structure representations of proteins [[15} |16} [17] typically model each residue by
one or few nodes with associated positions determined by its atoms’ coordinates. These strategies
can increase computational efficiency for predictive tasks, such as interacting residue predictions
[18]] and functional residue prediction [19], and are appropriate for certain generative modeling
tasks, such as generating backbone scaffolds [20, 21]. However, these approaches have previously
sacrificed all-atom structure resolution needed for design and packing-related tasks, along with much
information useful for predicting protein functions.

To address these limitations, we develop a novel coarse-grained representation that retains all-atom
structure resolution. In this representation, side-chain degrees of freedom are modeled explicitly in
3D space rather than intrinsically through torsion angles, which we conjecture makes it easier to
model geometry and interactions in 3D space.

SE(3)-equivariant neural networks have been used in various 3D object modeling tasks, including
atomic potential prediction [22| 23| 24], molecular property prediction [25} 26, 127,28, 29], protein
structure prediction, [2] and docking [30, 31]]. They incorporate the symmetry of 3D space and
are substantially more data efficient than their non-symmetry-aware counterparts [32,33]]. Input to
SE(3)-equivariant networks consists of geometric tensors, or the irreducible representations of the
SO(3) group (the group of rotations in R?), of various degrees [, such as scalars (I = 0), vectors
(I = 1), and higher degree (I > 2) tensors that transform under a rotation R through multiplication
with corresponding Wigner D-matrices D;(R). Objects with an associated rotation, such as backbone
frames [1]], can be initially embedded with geometric tensors [[15]. We use an SE(3)-equivariant
model adapted from Equiformer [29] along with an initial embedding of coarse-grained nodes with
geometric tensors.

3 Methods

3.1 A coarse-grained representation

Given a protein sequence a = (aq, ..., ay ) of length N where a; is one of the 20 canonical amino
acids, its structure is specified by the set of 3D coordinates of its atoms grouped by amino acid, X =

{X#X € R 3} | where n,, is the number of atoms in residue a;. In a CG representation,
each amino acid a; is represented by a predetermined set of CG nodes {c;z ?gf , where each CG

node c‘;i represents a subset o’ of the amino acid’s constituent atoms. The CG nodes are chosen
such that 1) their union represents all atoms of the amino acid; 2) each member atom of a node shares
at least one covalent bond with another member of the same node; and 3) each node consists of at
least three atoms that collectively form a rigid body whose orientation in 3D is uniquely determined.
Based on the last property, we define a forward CG mapping F of the 3D coordinates X' of an
amino acid a;’s atoms into its CG representation:
i i i ng
Fi X o (T, )55

where each tuple in the set consists of a CG node identity c;’ and a corresponding Euclidean
transformation 77" = (t_? , R}") € SE(3) that maps the predefined template coordinates for atoms



in J}“ to the corresponding input atom coordinates (see Appendix . Tableillustrates an example
of a CG scheme used in this work that respects the above properties while minimizing the redundancy
of atom representations across CG nodes. Figure [I] gives illustrations of this CG scheme for select
amino acids.

We define a reverse CG mapping G for an amino acid a; that maps its CG representation to the 3D
atom coordinates X 7“1 as follows: for each atom in the amino acid, we average the 3D coordinates
associated with the atom specified by any of its CG nodes.

3.2 Geometric tensor features and initial embedding

To each CG node, we assign a set of geometric tensor features of degree I = 0, ..., l;,4, With n,
channels per degree [25 28l 29]. As there are 2! + 1 features associated with an [-degree tensor,
there are n. X (lyaz + 1)2 features in total per node. We define the initial embedding of the nodes

E:CxS0(3)— R7e X (lmae+1* where C is the pre-determined set of the CG node types:

E: (¢, RY') = €' = D(R]") - LOOKUP(cj")

where LOOKUP : C' — Rne*(lma=+1)” jg 3 typical embedding function and D(R]") is the direct
sum of the Wigner D-matrices D; corresponding to the tensor features of various degrees I:

lmax [ ne
D(RY) = €D [@ Dy(RS)

=0 Lc=1

3.3 Structure prediction via iterative refinement using an SE(3)-equivariant neural network

Given an input sequence, its CG representation is instantiated with Euclidean transformations whose
translations and rotations are sampled from a normal distribution with zero mean and unit variance
and a uniform distribution over the SO(3) group, respectively. The output structure is predicted
via iterative refinement using an SE(3)-equivariant model that consists of Nyocrs blocks sharing
the same architecture, where each block is composed of N,; equivariant sub-blocks. The block
architecture is adapted from Equiformer [29], as detailed in Appendix[A.2]

Each block takes as input either the initial CG representation or the output of the previous block. A
block outputs two [ = 1 tensors for each node, one of which is used as the vector part of a non-unit
quaternion to compute an update R’ to the node’s rotation R;,, and the other to compute an update
to its translation f;n [[L] (we drop amino acid and CG node indices for clarity). The input Euclidean
transformation 7},, = (t_;n, R;y) is then updated to T}ery = (fmw, Ryew) via the following update
rules:

Rnew = R,Rzn and {new = t_, + t_;n

A block can optionally transform or simply copy the input embedding of each node, but either way, it
is multiplied by the direct sum of the Wigner D-matrices corresponding to the update rotation R'.
The proof of equivariance of these update rules is provided in Appendix [A.3]

3.4 Loss functions

To train the model, the Frame Aligned Point Error (FAPE) loss and the structure violation loss
introduced in [[1]] are computed based on the CG node Euclidean transformations and the reverse CG
mapped structures output from each block, respectively. Unlike in [1]], all atom FAPE loss is computed
for every block. We observed that the structure violation loss is important, since EquiFold is more
susceptible to predicting non-physical bond lengths and angles and non-bonded atom distances, due to
its modeling of CG nodes in extrinsic 3D space, compared to other models that predict torsion angles
representing internal degrees of freedom [1} 2} 3]. However, we do not observe strong instabilities in
EquiFold training dynamics like those reported in [1], when the loss is used from the beginning of
training. More details on the losses, including their relative weights, other hyper-parameter choices,
and training strategies are found in Appendix



Table 1: Performance of EquiFold on de novo designed mini-proteins from the test set broken down
by fold. All RMSDs are reported in angstroms. “RMSD” and “C,, RMSD” report all atom and
backbone C', atom RMSDs based on the comparison of EquiFold predictions and Rosetta predicted
structures, respectively. The last column “C,, RMSD (train)” reports the averaged backbone C, atom
RMSD based on the comparison of each test example to all examples of the same fold and length in
the training set, using Rosetta predicted structures.

Fold Train Test RMSD C, RMSD (, RMSD (train)

afBBa 92 3 230 1.79 4.36
BBaBB 533 8  1.09 0.53 0.91
BaBB 787 15  0.88 0.41 0.99
aaa 1330 24 1.07 0.54 2.79

Table 2: Performance of EquiFold on antibody structures over the test set used in [13]] broken down
by framework and variable regions. Performance of other models are as reported in [[L3]. RMSD (in
A) over N, C,, C, and O backbone atoms are reported for valid comparison. Column “Time” reports
approximate inference time for EquiFold and approximate run times for other models as reported in
[13] for predicting all atom structures.

Model HFr HI H2 H3 LF LI L2 L3 Time

EquiFold 044 074 0.69 286 040 0.78 040 1.02 ~ 1second

AlphaFold-Multimer 0.43 0.75 0.69 3.02 039 082 041 1.13 ~ 1 hour

IgFold 045 080 0.75 299 045 083 051 1.07 ~ 1 minute
4 Results

We report EquiFold’s performance on two structure datasets we curated to focus on structures that
present key challenges to protein structure prediction methods: designed mini-proteins and antibody
loops. In each challenge, we are primarily predicting structures that are small, have high error in recent
blind benchmarks, and have significant potential applications in biotechnology and protein design.
These sets also are comprised of regions that elude homology detection and traditional concepts
that underpin MSA (as do, by construction, de novo designed sequences). EquiFold achieved high
accuracy and speed over these sets, demonstrating that it can enable new downstream protein design
and engineering.

4.1 De novo designed mini-proteins

We first tested EquiFold on a set of de novo designed mini-proteins from [[10]], each having one of
four different folds (aaa, aBBa, BaB B, and SBaB5), with associated in silico structures predicted
using Rosetta [34]. After filtering for sequences with stability score greater than 1, we retained
2,842 sequences whose lengths range from 43 to 50. We randomly split the sequences into train,
validation, and test sets of size 2,742, 50, and 50. Test sequences have nearest training sequence
similarity ranging from 44% to 80% with mean of 67.2% P_-]q Table|l|shows all atom and C', RMSD
based on the test set broken down by fold. Average inference speed over the entire test set was 0.03
seconds per sequence, with the model containing 1.6M trainable parameters (see Table[d)). Figure
[2 shows test example predictions overlaid with ground truth structures. Rather than serving as a
benchmark relative to other structure prediction models, since the ground truth here are in silico
predicted structures, this result illustrates the ability of EquiFold to learn a variety of distinct protein
topologies with atomic resolution all-atom accuracy.

4.2 Antibodies

We obtained all antibody (Ab) experimental structures from the PDB [11] that were listed in The
Structural Antibody Database (SAbDab) [35]], as accessed on January 12, 2022. We processed this

'Sequence similarity is defined as (Iguery — Medit)/lquery Where lguery is the length of the query sequence
and n.q4;+ the Levenshtein edit distance between query and target sequences.



dataset to obtain the variable fragment portions of the structures and annotated the sequences with
Chothia numbering using ANARCI [36]. We obtained 6,789 structures with a resolution better than
4A and deposited before July 1, 2021 as training set, of which 50 structures were used for validation.
We used the same test set structures as in [13] that have resolution better than 3 A and deposited after
the aforementioned date. Compared to other models, EquiFold achieves similar or better accuracy
in backbone atom RMSD across different sequence regions (see Table [2) and results in all atom
RMSD of 1.33 A averaged over the test set. Importantly, the model has fast inference speeds of
approximately 1 second per Ab on average on a single A100 GPU for predicting all atom structures
and contains 2.4M trainable parameters (see Table ), compared to 27.6M of IgFold (including
26M of the antibody language model AntiBERTY) [13] and 93.2M of AlphaFold [1] that requires
time-consuming input preparation steps. Given its high speed and accuracy, it is practical to predict
structures at high-throughput scale for millions of antibodies observed in deep sequencing data sets
[37] and integrate the model in a design workflow [16 21]. Fig[3]shows selected test set predictions
overlaid with ground truth structures.

5 Conclusion and Future Work

We introduced EquiFold, a new end-to-end differentiable protein structure prediction model that uses
a novel coarse-grained (CG) representation of proteins. The model achieves high test set accuracy on
two datasets, while running at a substantially faster speed. Notably, it is trained on significantly less
data and does not rely on multiple sequence alignments [[1} 2] or protein language model embeddings
[3, 14} 113]]. Its accuracy and speed make it practical to integrate EquiFold as a sub-component of a
larger model. For instance, EquiFold can be combined in an end-to-end differentiable fashion with
another neural network that predicts various molecular properties based on the structure output by its
last block.

We leave to future work training EquiFold on more general classes of proteins from the PDB [[11] and
examining its generalizability to novel folds unseen in training data. Scaling to larger proteins will
require addressing the quadratic complexity of the message passing layers, possibly using similar
strategies in earlier works [1]]. To integrate physical priors, we will extend the CG representation
to include hydrogens and implement various energy functions such as the Rosetta all-atom energy
function [34]]. With such utilities, EquiFold can be adapted to generate conformational ensembles
within an energy band, perform flexible docking, and fit structural models to experimental data such
as that from cryogenic electron microscopy (cryo-EM) and hydrogen-deuterium exchange (HDX).
Lastly, the CG representation could be used in generative modeling of protein sequence and structure
together, rather than modeling them sequentially as done in recent works [16} 20} 21].
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Figure 1: A representation of EquiFold’s coarse-grained node scheme as applied to four amino
acids: a) lysine, b) phenylalanine, c) isoleucine, and d) glutamate. Atoms belonging to each node
are circled and axes representing the node’s specification (by rotation-transformation) are shown
in a corresponding color. Backbone nodes, which are common to each amino acid, are shown in
consistent colors across panels.
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Figure 2: EquiFold’s predictions (rainbow) on test set examples are shown overlaid with the ground
truth structures (gray), one for each of the four folds [10]: a) HHH_rd3_0030 (aaq, 0.60A, 62%),
b) HEEH_rd2_0948 (a83a, 1.50A, 51%), ¢) EHEE_rd3_0145 (o383, 0.86A, 60%), and d) EE-
HEE_rd3_0132 (88a30, 0.82A, 60%), where the last two numbers in parentheses correspond to
all-atom RMSD and sequence similarity to the nearest training example. EquiFold achieves high
accuracy on sequences that have low similarity to any training examples.

Figure 3: EquiFold’s predictions (rainbow) on two examples from the test set [13]] are shown overlaid
with the ground truth structures (gray): a) 71fb_HL (1.09A, 71%) and 7002_CD (0.98A, 72%), where
the two numbers in parentheses correspond to all-atom RMSD and sequence similarity to the nearest
training example.



Table 3: The amino acid coarse-graining (CG) scheme used in this work. Each column with “CG”
prefix defines a group of atoms belonging to a CG node for each amino acid.

AA CGl1 CG2 CG3 CG4
ALA C.Ca,Cs.N C,CasO i i
ARG C.Ca.Cs.N C.Ca.O Cs.C., Cs N, Ny1, Nya, O
ASN C.Co.Cs.N C.Ca,O C. Nsa. Os1 i
ASP C7Ca7Cﬂ7N C7Ca70 0770517052 -
CYS C.Co.Cs.N C.Ca,O Co,Cs, S, :
GLN C7Ca7CﬁaN C7Ca>o 0’770670617]\[62 -
GLU C.Ca.C5.N C.Ca.O .. Cs,0u1, O :
GLY C,Cq, N C,C,, 0 - -
HIS C,Ca,Cs,N C.Ca,O C,,Cs3, Cer, No1, Neg :
ILE CaC(MCBa C7Ca70 05,071,072 Cﬁac’ylac(ﬂ
LEU C.Ca.C5.N C.CorO . Ch1. Cra !
LYS C.Ca.C5,.N C.Ca.O Cs,C.. Cs C5.C., N,
MET C.Ca.Cs.N C.Ca.O CL. S5 i
PHE C.C,.Cs.N C.Co.O C,,Cs1,Csz, Cat, Cer, O :
PRO C.Co.Cs.N C.Ca.O Cs.C., Cs i
SER C.Ca.C5.N C.Ca.O . C. 0 :
THR C.Ca.Cs N C.C.O Cs, Cogr Con i
TRP C.Ca.C5.N C.CarO  C,,Cs1,Css, Cea, Cusy Ca, Oz, Gy Nt :
TYR CaCOuCﬂaN C7Ca7o CV7O§1aC§270617062aCC;On -
VAL C.Ca.Cs.N C,CasO Cs, o1, Oy i

A Appendix

A.1 Computing coarse-grained node template coordinates and ground-truth Euclidean
transformations

For each coarse-grained (CG) node defined in Table[3] we compute the template coordinates of all
the atoms comprising the node as follows. Given a protein structure dataset D, we compute the
Euclidean transformation T, corresponding to each CG node ¢ in D using Algorithm 21 of [[1]] with
the 3D coordinates of the first three atoms of the CG node ¢’s atom group as input. Next, we apply
the inverse Euclidean transformation 7~ ! to the 3D coordinates of all the atoms in the node ¢ into the
corresponding local frame. Lastly, we average the observed coordinates in the local frames across all
instances in the dataset D grouped by CG node type defined in Table|3|and subtract their geometric

centroids.

To compute the ground truth Euclidean transformation for a given CG node to be used in the FAPE
loss [1l], we use the Kabsch algorithm [38] to determine the transformation from the template
coordinates to the observed coordinates that minimizes the root mean square error (RMSE) of the
node’s constituent atoms. To elaborate, for the j-th CG node c; containing M atoms of the ¢-th amino

aq @i

acid a;, we apply the Kabsch algorithm to the template coordinates W = [u‘iij o ,IHJCVJ'[ ] € R3*M

and the corresponding input coordinates X = [f;’ e ,fjﬁ[ ] € R3*M_ The algorithm factorizes
the covariance matrix H = W. X! into eigenvectors and values using singular vector decomposition,

H=USV"

where W, and X, are mean centered template and input coordinates. The resulting rotation and
translation are

4 4
i T ;2% a;,=C;
Ry =VU", t;=x/ —R;j'w/ ,

ag
A»CJ

where wfg € R¥and 7/ € R3 are the mean coordinates of W and X respectively.



A.2 SE(3)-equivariant neural network architecture details

Each block of the neural network consists of Ng,,;, sub-blocks that share the same architecture, where
each sub-block is an adapted version of the Equiformer’s “Transformer block™ [see 29, Figure 1]. As
the general theory of SE(3)-equivariant neural networks and the implementation of the Transformer
block are well-described in [29], here we describe only the modifications in our adapted version.

Given the input set of coarse-grained (CG) nodes and their Euclidean transformations, the block
initially computes pairwise distances r;; and normalized distance vectors 7;;, where ¢ and j index
CG nodes. 7;; is projected onto d;qq;4; sinusoidal radial bases with learnable weights and a cutoff
distance 7., which are used in radial functions that parameterize tensor products in the Equivariant
Graph Attention module. 7;; is used to compute spherical harmonics SH(7;) input to tensor products.
When training the network, gradients do not propagate through r;; and 7;;.

In our adapted version of the Equivariant Graph Attention module, after the application of the initial
linear layers to input node embeddings, instead of element-wise summation, channel-wise fully
connected tensor products are applied to the embeddings of every CG-node pair ¢j, which is followed
by another linear layer to produce output tensors x;; with the same number of channels as the input.
Next, Depth-wise Tensor Product (DTP) is applied to z;; and SH(7;;) with a radial function that
takes as input the radial bases mentioned above and additionally a scalar edge embedding vector
corresponding to the primary amino acid sequence distance for the CG-pair ij, clamped at maximum
absolute distance of 32; for input proteins with multiple chains, sequence distances across chains are
set at the maximum distance. The edge embedding is implemented via a simple look-up table with
learnable weights and has the same dimension as the number of channels in input tensors. The output
of the DTP layer is uniformly shuffled and grouped by N4 attention heads and a linear layer is
applied to produce tensors of various degrees with appropriate channel numbers for the remainder of
the module.

The output of each sub-block except for the last one are updated node embeddings corresponding to
the input CG nodes. The last sub-block outputs only two [ = 1 vectors per CG node as mentioned in
Section[3.3] Edge embeddings are shared across sub-blocks of a given block.

A.3 Proof of equivariance of the Euclidean transformation update

Under a global Euclidean transformation T’ = (2 R), the Euclidean transformation 7' = (t,R)
corresponding to a CG node that specifies the mapping between the observed and template coordinates
transforms as

(F, R) ~ (RT+ 1, RR),
and the update transformation 7" = (#, R’) output by a block transforms as
(t',R') — (R, RR'RT).
We show that the update rules given in Section [3.3|are equivariant by applying a global transformation

T to the input T3, = (t_;n, R;,,) and update T transformations and showing that their composition is
equivalent to the global transformation of the output T},¢,, = (f;zew, Ruew):

Pt s RBP4 (Rip +1) = R(E + i) + 1= Rippew +1

and
R'R;y, — RR'RTRR;,, = RR'Ri, = RRpew.

A.4 Hyper-parameters and training details

Table ] provides the hyper-parameter values used for the two experiments described in Section [4
Both models were trained using the Adam optimizer [39]] using PyTorch [40] with beta=(0.9,
0.999) and weight_decay=10"5. We used a warm-up phase of 1,000 steps, where the learning rate
was linearly increased from 0 to 102 and input structures to the model were linearly interpolated
between the ground truth structures and random initializations; for rotations, we used quaternion
spherical linear interpolation [20]. After the warm-up phase, the learning rate was decreased to 10~*
following a cosine annealing schedule over 100,000 steps and was kept at the final value thereafter.
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Table 4: Hyper-parameter values used for the experiments described in Section [4]

Parameter Mini-protein Antibodies
Number of channels, n, 64 64
Number of radial basis, d,qd;al 32 32
Number of blocks, Nyjocks 4 6
Number of sub-blocks, N 3 3
Number of attention heads, Nj,cqq 2 2
Cut-off distance in A, 7. 32 64
Maximum tensor degree, ;42 1 1
Gradient clip value 1.0 per example 1.0 per example
FAPE loss clip value 10.0 30.0
FAPE loss weight 1.0 1.0
Structure viol. loss weight 0.5 0.2
Number of trainable parameters 1.6M 2.4M

Both models were trained with the FAPE and structure violation losses computed on the output
structure of each block. The structure violation loss was modified to penalize deviations from standard
values by more than 3 standard deviations, compared to the 12 standard deviations used in [1]. A
mini-batch size of 8 was used with 8 A100 GPUs in PyTorch’s Distributed Data Parallel mode
[40]. Model training for the miniprotein experiment was stopped after one day as the validation loss
converged. The antibody model was trained for approximately 20 days.

To circumvent large memory requirement originating from the quadratic computational complexity
of attention layers, we computed gradient updates of the learnable weights of the models on a
block-by-block basis, stopping gradient propagation through rotations and translations after each
block. Early experiments on mini-proteins showed that this model weight update algorithm did not
substantially affect training dynamics. In addition, we implemented a distinct embedding layer for
each block. Similarly, we did not observe a significant benefit to using tensors of degrees higher than
1. We leave to future work a more careful benchmark of different model weight update schemes and
other hyper-parameters.
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