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Abstract

Antibodies are produced by the immune system in response to infection or vaccina-
tion. While sequencing of the individual antibody repertoire is becoming routine,
identifying the antigens they recognize requires costly low-throughput experiments.
Even when the antigen is known, epitope mapping is still challenging: experimental
approaches are low-throughput and computational ones are not sufficiently accurate.
Recently, AlphaFold2 has revolutionized structural biology by predicting highly
accurate protein structures and complexes. However, it relies on an evolutionary
information that is not available for antibody-antigen interactions. Traditional
computational epitope mapping is based on structure modeling (folding) of the
antibodies followed by docking the predicted structure to the corresponding antigen.
The problem with this sequential approach is that the folding step does not consider
the structural changes of the antibody upon antigen binding and the docking step
is inaccurate because the antibody is considered rigid. Here, we develop a deep
learning end-to-end model, that given an antibody sequence and its corresponding
antigen structure can simultaneously perform folding and docking tasks. The
model produces the 3D coordinates of the entire antibody-antigen (Ab-Ag) or
nanobody-antigen (Nb-Ag) complex, including the side chains. An accurate model
is detected among the Top-5 and Top-100 predictions for 28% and 70% of the
test set, respectively. In addition to mining antibody repertoires, such a method
can have the potential to be used in antibody-based drug design, as well as in the
vaccine design.

1 Introduction

Antibodies are part of the large and diverse repertoire of the immune receptors which are behind
the specific antigen recognition mechanism [1, 2]. B cell sequencing provides a glimpse into the
blood circulating antibody repertoires. However, the antigens and their epitopes remain unidentified.
Moreover, antibodies are the most rapidly growing class of human therapeutics for a range of
diseases, including cancer or viral infections. Epitope characterization is an important component of
therapeutic antibody discovery and analysis of antibody repertoires [3, 4]. However, high-throughput
experimental characterization of epitopes for thousands of Ab-Ag complexes remains beyond the
reach of current technologies.

Computational methods for modeling Ab-Ag structures from individual components are high-
throughput, but frequently suffer from high false positive rate, rarely converging to a single structure
[5]. Modeling of Ab-Ag complexes most often proceeds in two separate steps. First, the antibody is
folded from its sequence, using tools like comparative modeling, ab initio modeling [6, 7] or deep
learning [8–11]. Second, the predicted antibody structure from the previous step is docked to an
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antigen using shape complementary [12], physico-chemical constraints [13] and more recently deep
learning models [14, 15]. There are two main bottlenecks: low accuracy of antibody modeling and
Ab-Ag scoring functions. Docking algorithms produce thousands of models, over 99% of which are
incorrect. These models are then re-ranked with some scoring function [16] to detect the accurate
models. However this approach ignores the fact that antibodies have flexible loops (Complementarity
Determining Regions - CDRs) that can change their conformation when binding to an antigen. More-
over, inaccuracies in antibody models introduce further errors in the docked configurations and their
scores. Consequently, for Ab-Ag complexes docking algorithms succeed to find and rank an accurate
complex among the Top-10 best scoring in about ∼10-30% of the cases [5] with further decrease for
modeled antibodies.

Recently, deep learning models have been successful in protein structure prediction [17–22]. Most
recent structure prediction methods, including AlphaFold2 and RosettaFold, use deep learning models
for end-to-end modeling, where the input is a sequence and the output is the 3D structure [21–23, 10].
There are also dedicated methods for antibody modeling that use deep learning, but they do not take
the antigen into account [24, 8, 25, 9]. Moreover, AlphaFold2 can be applied for complex structure
prediction using AlphaFold-Multimer (AFM) model [26]. However, it achieved only ∼10% success
rate on the Ab-Ag benchmarks [27] due to the lack of evolutionary information.

Here we address the Ab-Ag structure prediction by integrating the antibody folding task with the
docking task. We design an end-to-end model that given an antigen structure and an antibody
sequence produces accurate complex models. In contrast to docking, only dozens of models are
produced with a much smaller fraction of incorrect ones, resulting in the Top-10 success rate of 37%.

2 Methods

Summary. The input to the network is the antibody sequence and the antigen structure. The network
outputs the 3D structure of their complex, including backbone and side chain coordinates (Fig. 1).
If no antigen structure is given as an input, only the antibody structure is predicted. The network
simultaneously folds the antibody (antibody folding) and determines the orientation of the antigen
with respect to the antibody (antigen docking). We achieve transformational invariance for antibody
folding by aligning the training set structures on a single representative structure (as in NanoNet[11]).
For antigen docking the invariance is accomplished by constructing amino acid reference frame for
the antigen (using the N-Cα-C atoms) and transforming it to the global reference frame. Reference
frames are constructed for all interface amino acids during the training and for all surface accessible
amino acids during the inference.

During the training, the network learns to predict (i) coordinates of the heavy and light chains
separately (similarly to NanoNet), (ii) the transformation of the light chain with respect to the heavy
chain, and (iii) the transformation of the antigen interface amino acid from the global reference frame
to the correctly docked position. The loss is calculated as a weighted MSE (equivalent to the RMSD)
on the backbone and side chain coordinates for the heavy, light, and antigen chains, separately (A.1).
In addition, for antibody we add a term that enforces 3.77Å between consecutive Cα atoms and
an additional auxiliary loss that enforces that the intermediate layers structure is consistent with
distances (A.1).

During inference, the antigen interface amino acids (the epitope) are usually unknown. Therefore, we
generate complexes using each solvent accessible amino acid as an interface one, by transforming it
to the global coordinate frame and predicting the complex structure. This iteration over amino acids
enables us to obtain multiple complex models from the network. This requires us to build a scoring
network that can receive a complex model and predict whether it is correct or not.

Network architecture. Each amino acid in the input antibody sequence is represented by a 24-
dimensional feature vector consisting of 21 channels for amino acid type one-hot representation
(20 standard + unknown), two additional channels indicating the chain to which the amino acid
belong to (heavy or light chain). The last channel is for indicating a placeholder for the light chain
transformation. Consequently, each antibody corresponds to a sequence of length 281 consisting
of 24-dimensional feature vectors, with 150 and 130 positions reserved for the heavy and light
chains, respectively. The additional position is a placeholder for the transformation of the light chain
with respect to the heavy chain. The input antigen structure is represented by a 54-dimensional
feature vector consisting of 21 channels for amino acid type, one channel with solvent accessible area
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normalized to [0,1], one channel indicating the current amino-acid used to construct a global reference
frame, and additional 30 channels with backbone (N, Cα, C, O) and side chain x,y,z coordinates (Cβ,
and 5 additional atoms that define the χ1-5 angles). Similarly to antibody representation, we have an
additional placeholder for the transformation of the antigen with respect to the antibody. The antigen
vector is limited to antigens of length 600. Consequently, each antigen corresponds to a sequence of
length 601 consisting of 54-dimensional feature vectors.

Figure 1: The Network architecture.

Figure 2: Distance transformer.

The network was designed to simulate the biological Ab-Ag recognition, consisting of four modules
that enable inference based on the individual components (the antibody and the antigen) as well as their
influence on each other. The network consists of several layers of Geometric Pair Attention (GPA)
where each GPA layer integrates the information about antibody structure and antigen orientation
from the previous layer using a dedicated Distance Transformer modules (Fig. 2)). Each of the
four Distance Transformers is responsible for a different aspect of the Ab-Ag interaction. This
design enables the network to pass information regarding the effect the antigen has on the antibody
conformation and vice versa. The structural information is also incorporated into the attention
mechanism by adding the learned pairwise distances to the attention logits and masking any attention
logits of amino-acids with a distance greater than an adjusted threshold. Additionally, by splitting the
Distance transformers to the 4 components we can train the network to predict antibody structures
without an antigen.

The Distance Transformer module is designed similarly to the Evoformer in the AlphaFold2 [21].
The main principle is to view the problem as a pairwise-distance prediction problem or inference of
the graph defined by amino acids. The Distance Transformer consists of 1D and 2D embedding that
connect the sequence and pairwise distance representations. The pairwise distance are calculated
in each layer based on the intermediate predicted structures and are added as a bias to the attention
logits scaled by a learned scalar α. In the first GPA layer, all the pairwise distances are initialized to
zeros.
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Figure 3: Antibody folding. A. RMSD (Å) of different regions for the IgFold antibody test set (67
structures). B. RMSD (Å) of different regions for the Igfold nanobody test set (21 structures).

Scoring. The input to the scoring network is the Ab-Ag complex generated by the folding and
docking network with addition to the original vector representation used as input for the previous
network. The transformational invariance is achieved by the antibody alignment as in the folding
above. We use a similar architecture as before without changing the antibody structures or the antigen
orientation during training. The network is trained to classify complexes into Acceptable quality or
incorrect according to CAPRI criteria [28]).

Dataset. The antibody and nanobody structures where obtained from the SabDAB database [29, 30].
We used only structures with a resolution of 3.5Å or better. We clustered this dataset using a sequence
identity threshold of 99% for antibodies, keeping structures with identical sequence only if they
appeared unbound and in complex with an antigen. This resulted in 2,823 structures (1,345 Ab-Ag,
380 Nb-Ag complexes, 920 antibody and 178 nanobody unbound structures). We reserved 8% of
the data for validation. All the structures were aligned to a reference mAb frame using PyMOL. We
used two test sets for evaluating the performance of the folding and docking tasks. The first test
set for the evaluation of antibody folding is identical to IgFold [9] test set, containing 67 antibodies
and 21 nanobodies (49 and 16 in complex with an antigen, respectively). The structures in this
test set were published after the training of AlphaFold2 and IgFold (July 2021). The second test
for the evaluation of the docking performance, contains the 65 complexes from the IgFold test set,
as well as 66 complexes (54 antibodies and 12 nanobodies) from the extended unbound docking
benchmark [31]. The structures from the docking benchmark were published prior to the training of
AlphaFold2 and IgFold and therefore could not used for the antibody folding evaluation. We removed
all complexes with antigen length under 100 amino acids. This resulted in a test of 103 complexes
(77 and 26 Ab-Ag and Nb-Ag, respectively) for the evaluation of the docking task. For both test sets
we used the same antibody sequence identity cut-off as IgFold (99%) to exclude structures from the
training set.

3 Results

Antibody folding accuracy. For the evaluation of predicted antibody structures we calculated the
backbone RMSD of each region of the antibody (Frame H, H1, H2, H3, Frame L, L1, L2, L3) after
alignment of the light or heavy chain frame regions (Table 1 ,2, Fig. 3). We compared our results to
AFM and IgFold. For IgFold a single structure was produced, for AFM the best scoring one (pTM
score) was evaluated, for our model the best scoring model was evaluated. We obtain high accuracy
antibody models that are comparable to AFM and IgFold without relying on additional sequences
and MSA. For nanobodies, AFM has a higher accuracy for CDR3 compared to IgFold [9] and our
approach. We assume this is due to the small size and the composition of the nanobody test set,
because the AlphaFold accuracy was lower for a larger test set [11].

Docking accuracy. Docking models were evaluated according to the DockQ quality measure
classified into Incorrect, Acceptable, Medium, and High quality [32]. The success rate was calculated
as the fraction of test set complexes with Acceptable, Medium, and High quality models among the
top N best scoring models (N = 1,5,10,20,50,100). The success rate of our method is ∼ 20% when
only the Top-1 prediction is considered (Fig. 4A). For Top-10 predictions the success rate is ∼37%.
When Top-100 predictions are considered, our method reaches almost 70% success rate. The success
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Figure 4: Docking performance for the 103 complexes in the docking test set: 77 Ab-Ag complexes,
26 Nb-Ag complexes. A. Success rate, the dotted line corresponds to the percentage of complexes
with any acceptable models. B. Hit rate of the top-5 predictions. C. Top1 structures generated by our
model (left - PDB 7s4s, DockQ of 0.78, right - PDB 6dbg, DockQ of 0.48).

Table 1: Antibody folding. Average RMSD (Å) across frame regions and CDR loops for the antibody
folding test set (67 structures).

Method Fr H Fr H1 H2 H3 L Fr L1 L2 L3

AFM 0.83 0.65 0.88 0.79 2.62 0.60 0.70 0.45 0.96
IgFold 0.75 0.54 0.94 0.87 2.66 0.55 0.77 0.47 0.95
Ours 0.69 0.50 1.01 0.91 2.62 0.46 0.78 0.49 0.95

rate is higher for nanobodies compared to antibodies. Most of the models are of Acceptable and
Medium quality, with higher fraction of Medium quality for antibodies compared to nanobodies.
In addition, we calculate the hit rate as the number of Acceptable or higher quality models among
the Top-5 best scoring models. In ∼8% of the antibody test set cases, all the Top-5 models are of
Acceptable or higher quality (Fig. 4B). We compared our results in the docking task to the five
models produced by AFM. The success rate of AFM is lower in the range of 20-31%. However,
AFM is producing more models of High quality. This indicates that our models can be further refined
when providing AlphaFold our predictions as templates [33]. We have also compared our results to
ZDOCK 3.0.2 [34] with antibodies modeled by AFM and found that our performance is ∼10-40%
higher (Fig. 4A).

4 Conclusions

We developed an end-to-end model for accurate and high-throughput prediction of Ab-Ag complexes
starting from antibody sequence and antigen structure. The approach is also applicable for Nb-Ag
complexes with comparable accuracy and can also work with modeled antigens. The high accuracy
was achieved by integrating antibody folding with antigen docking and designing transformationally
invariant representation. We expect the method to be applicable in antibody drug design pipelines as
well as in mining sequences antibody repertoires.
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A Appendix

A.1 Loss function Definition

For the training of the network we defined the following loss function:

L = LAbStruct + LCα + 0.1 · LLightOrient + 0.003 · LDock + 0.5 · LAux (1)

where:

LAbStruct(yab, ŷab) = MSE(yab, ŷab) (2)

Is the loss term regarding the antibody heavy and light chains structure. For each chain it is defined
as the mean-squared-error (MSE) between the true 3D coordinates of the chain and the predicted
coordinates by the model. Each of the chains is aligned to a reference frame region. This term is
equivalent to the RMSD between the individual chains.

LCα(ŷab) =
1

N − 1

N−1∑
i=1

Max(|d(Cαi, Cαi+1)− 3.77| − 0.051, 0) (3)

Is the loss term that optimizes the distance between consecutive Cα atoms to 3.77Å Where Cαi are
the 3D coordinates of the Cα atom in the i amino acid of the predicted structure, and d is Euclidean
distance. An standard deviation of 0.0051 Å was used.

LLightOrient(yabL, ˆyabL) = MSE(yabL, ˆyabL) (4)

Is the loss term that optimizes the light chain orientation with respect to the heavy chain. It is defined
as the MSE between the true 3D coordinates of the light chain and the predicted coordinates of the
model after applying the light chain transformation predicted by the model.

LDock(yag, ˆyag) = MSE(yag, ˆyag) (5)

Is the loss term regarding the antigen orientation. It is defined as the MSE between the true 3D
coordinates of the solved antigen interface and the predicted interface coordinates of the model. This
term is equivalent to the interface RMSD.

LAux = LAux[LAbStruct] + LAux[LLightOrient] + LAux[LDock] (6)
where:

LAux[f ] =

L−1∑
i=1

2i−L · f(y, ŷi) (7)

L is the total number of GPA layers in the model, y is the true output relevent for this loss function
and ŷi is the i’th intermediate layer output. This term is enforces the model to have a structure
representation of the complex in the intermediate layers as well so we can use the intermediate
complex structure to calculate the pairwise distances inserted to the Distance Transformer.

A.2 Training setup

The docking and folding network was trained for 150 epochs with a batch size of 16 using a model
checkpoint on the total validation loss. We used AdamW optimizer and an initial learning rate of
0.00025 with a cosine decay until 0.0001. In order to avoid bias of the network towards antibody
structures that have more interface residues (and therefore represented more in the training set) we
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used a sample weight of 1
#contacts on each loss term regarding antibody structure (heavy and light

chains, Cα distance, light orientation).

The scoring network was trained for 20 epochs with a batch size of 64 using a model checkpoint
on the validation F1 score. We used AdamW optimizer and an initial learning rate of 0.0005 with a
cosine decay until 0.0001. For each class i we used a class weight equal to #total

2·#classi

A.3 Scoring step

For the scoring task, we fed to our folding and docking network each of the residues of every Ab-At
complex in the training and validation sets. To enrich the model with more positive samples and to
avoid cases were there are no positive labels for some antibody, we generated additional positive
samples for each Ab-Ag complex by generating a small random transformation for the antigen when
bound in the right orientation.

Table 2: Nanobody folding. Average RMSD (Å) across frame regions and CDR loops for the
nanobody folding test set (21 structures).

Method H Fr H1 H2 H3

AFM 0.60 1.63 1.05 2.16
IgFold 0.65 1.63 1.48 3.04
Ours 0.60 1.75 1.81 3.34

Table 3: Docking success rate (%) for the 103 structures in the docking test set.

Method Ab Nb

T1 T5 T10 T100 T1 T5 T10 T100

AFM 19.48 23.37 23.37 23.37 19.23 30.77 30.77 30.77
ZDOCK 10.39 15.58 19.48 35.06 3.85 15.38 26.92 38.46
Ours 18.18 25.97 33.77 67.53 23.08 34.62 46.15 76.92
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