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Abstract

Approaches to in silico prediction of protein structures have been revolutionized
by AlphaFold2, while those to predict interfaces between proteins are relatively
underdeveloped, owing to the overly complicated yet relatively limited data of
protein–protein complexes. In short, proteins are 1D sequences of amino acids fold-
ing into 3D structures, and interact to form assemblies to function. We believe that
such intricate scenarios are better modeled with additional indicative information
that reflects their multi-modality nature and multi-scale functionality. To improve
binary prediction of inter-protein residue-residue contacts, we propose to augment
input features with multi-modal representations and to synergize the objective with
auxiliary predictive tasks. (i) We first progressively add three protein modalities
into models: protein sequences, sequences with evolutionary information, and
structure-aware intra-protein residue contact maps. We observe that utilizing all
data modalities delivers the best prediction precision. Analysis reveals that
evolutionary and structural information benefit predictions on the difficult and rigid
protein complexes, respectively, assessed by the resemblance to native residue
contacts in bound complex structures. (ii) We next introduce three auxiliary tasks
via self-supervised pre-training (binary prediction of protein-protein interaction
(PPI)) and multi-task learning (prediction of inter-protein residue–residue distances
and angles). Although PPI prediction is reported to benefit from predicting inter-
contacts (as causal interpretations), it is not found vice versa in our study. Similarly,
the finer-grained distance and angle predictions did not appear to uniformly improve
contact prediction either. This again reflects the high complexity of protein–protein
complex data, for which designing and incorporating synergistic auxiliary tasks
remains challenging.

1 Introduction

Proteins are essential biomolecules of life. The seemingly simple, linear bio-polymers made of 20
standard amino acids can adopt vast choices of 1-dimensional (1D) amino-acid sequences, fold into
unique 3-dimensional (3D) tertiary structures, interact with each other to form protein complexes and
assemblies, and perform various molecular functions underlying cellular processes.

Intrinsically multi-modality, protein data are increasingly treated that way in machine learning. Some
of the most significant examples come from the field of protein structure prediction. CASP (Critical
Assessment of Structure Prediction) 13 in 2018 proved the success of predicting 2-dimensional
(2D) intra-protein residue–residue contact/distance maps as images from 1D sequences, including
pioneering RaptorX-Contact [1], AlphaFold [2], and C-I-TASSER [3]. CASP 14 witnessed giant
leaps by AlphaFold2 [4] that combines transformers for 1D sequences, message passing for 2D
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residue–residue contact maps, and roto-translationally equivariant neural networks for 3D atomic
coordinates to jointly model multiple modalities of proteins in an end-to-end fashion. Inspired by
AlphaFold2, RoseTTAFold [5] also followed the spirit of multi-modal end-to-end learning.

Unlike protein structure prediction, the sibling field of protein complex/assembly structure prediction
has yet seen as successful technology breakthroughs, largely due to more complexity and less data.
The straightforward extension from intra- to inter-protein contact prediction using Complex Contact
[6] did not reach the full potential, partly because paired multiple sequence alignments as feature
sources and paired structures as label sources are much less abundant than their unpaired counterparts.
The straightforward extension from tertiary to quaternary structure prediction using RoseTTAFold or
AlphaFold2, by artificially inserting amino acids between two proteins [5, 7], saw limited success.
Recently, the inter-protein contact prediction field saw some exploration into the cross-modality,
multi-task learning and pre-training. A state-of-the-art (SOTA) method [8] utilizes as input the
coevolutionary features (generated from the MSA (multiple sequence alignment) transformer) and
intra-protein distance maps (generated from predicted or experimental structure information). It then
combines a deep residual network, a channel-wise attention mechanism, and a spatial-wise attention
mechanism to predict the interchain distance maps of both homodimers and heterodimers. These
studies naturally lead us to explore the possible synergy of more tasks (such as distance prediction)
besides inter-protein residue contact prediction as well as the systematic studies of input information
from more modalities besides protein sequences.

Contributions. With the aforementioned review of the field, we are well-motivated to dive into
the following two-fold question: Can one improve inter-protein residue contact prediction via
incorporating multi-modal data and synergizing multiple predictive tasks?

Our first effort is to examine the effect of multi-modal protein data, coupled with the SOTA feature
extractors. Motivated from [8, 9], three modalities are included: (i) protein sequence representations
extracted from HRNN [10], (ii) sequences with evolutionary information encoded by an in-house
protein language model, similar to ProtBERT [11], pretrained using protein domain sequences from
Pfam RP15; and (iii) structure-aware intra-protein residue contact maps with GAT encoders [12].
Our experiments uncover that, by adding extra modalities to models, we can boost the predictive
performance (AUPRC) from sequence-only to all modalities by 34.37%, surpassing the SOTA
performance by 26.47% [13]. Moreover, we categorize test protein complexes into three cases
based on the levels of the unbound-to-bound protein conformational changes [14], and observe that
evolutionary and structural information benefit predictions on the rigid protein complexes by 41.4%
and 69%, respectively; and they did on the flexible/difficult cases by 83.3% and 66.6%, respectively.

Next, we explore on how auxiliary predictive tasks could impact inter-protein residue contact
prediction. Since it is reported that protein-protein interaction (PPI) prediction benefits from contact
prediction acting as a casual interpretation [15, 9], we first assay whether it is vice versa (via pre-
training). Moreover, we enforce models to simultaneously predict inter-protein residue-residue
distances and angles, which are closely related to (actually finer details about) binary contacts and
presumably aid the prediction. Unfortunately, none of the auxiliary tasks are shown to provide
synergistic performance gains, on protein complexes across all categories.

2 Method

Tasks. (1) Target task. We target at predicting the binary, inter-protein residue contact map (or
inter-contact in short) given two proteins as inputs. Specifically, considering two proteins of certain
representations containing L1 and L2 residues, respectively, a model is asked to output a interface
matrix Cpred ∈ [0, 1]L1×L2 whose entries stand for the probabilities of the inter-contact between
two corresponding residues across proteins. (2) Auxiliary tasks. Besides binary prediction of inter-
contacts, we also have two types of auxiliary tasks: binary prediction of PPI, the consequences
of inter-contacts (incorporated through pre-training) and multi-classification of inter-protein 2D
geometries, the finer details of inter-contacts (incorporated through multi-task learning concurrent
with binary contact prediction). Specific 2D geometries follow [5], including Cβ–Cβ distance, a
dihedral angle along the virtual bond connecting two Cβ atoms, dihedral angles θij and θji defined
along consecutive N–Cα–Cβ–Cβ atoms, and planar angles ϕij and ϕji defined along consecutive
Cα–Cβ–Cβ atoms.
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Figure 1: A conceptual overview of using multi-modal representations of proteins to predict contact map, aided
by auxiliary tasks. Left: Given two proteins, we extract their three modalities as inputs: protein sequences,
evolutionary and structural information, with encoders of HRNN, ProtBERT and GAT. Middle: Knowledge
of protein-protein interaction (PPI) is introduced as an auxiliary task via pre-training. Right: 2D geometry
prediction (distances and angles) is introduced as an auxiliary task to the target task (inter-protein contact
prediction) through multi-task learning / multi-objective optimization.

Data. Considering the different mechanisms to incorporate the aforementioned two types of auxiliary
tasks, there are two datasets.

Target task and auxiliary task of distance and angle prediction (multi-task learning). We used the
data from Docking Benchmark Version 5 (DB5) [16] and the split from [13]. Due to the extremely
imbalanced ratio of positive and negative residue-contact pairs in interface contact maps (less than
1:1000), during training we down-sample negative contact pairs and leave the positive (native) ones
intact [17] so that the positive-to-negative ratio reaches 1:10. Protein sequences are directly retrieved
from PDB files and and per-residue featurization follows [13]. Intra-contact graphs are constructed
from the unbound structures (PDB files) following the k nearest neighbor (k-NN) principle where
k = 20. We derive the labels from the bound structures, including binary contacts and discretized
distances and angles. More details are provided in Appendix A.

(2) Auxiliary task of PPI prediction (pre-training). We curate 4243 positive interactions from [18]
and 4856 negative interactions from [19]. To remove redundancy for PPIs, data are filtered into 1007
unique proteins for both positive and negative interactions. Protein sequences are retrieved from
UniProt. We use random 60%/15%/25% split for training/validation/test sets.

Encoders. We introduce three protein modalities encoded with SOTA neural networks. (i) Protein
sequences are encoded through hierarchical recurrent neural networks (HRNN) [20, 21], (ii) sequences
are additionally encoded using our own protein language model (pretrained using RP15 sequences)
that captures evolutionary information, and (iii) structure-aware intra-contact maps are embedded
with graph attention network (GAT) [12]. Three resulting embeddings are then concatenated as the
protein representation. The detailed architecture is depicted in Appendix B.

Model Architecture and Training. The overall pipeline of our experiments is presented in Figure 1.
In brief, we feed the model with multi-modal protein representations, encoded by the state-of-the-art
(SOTA) neural networks. Afterwards, we introduce auxiliary predictive tasks through via pre-training
or multi-task learning. During training, we use the balanced binary cross entropy loss for optimization
which is weighted summed with the ℓ2-norm regularization loss to avoid overfitting. All models are
trained with batch size of 2 and Adam optimizer for up to 200 epochs. Three hyper-parameters are
tuned based on validation AUPRC: learning rate from {0.00001, 0.0001, 0.001}), GAT layer number
from {1, 2, 3, 4} and dropout rate from {0.1, 0.2, 0.3, 0.4}).

In the first step to explore auxiliary tasks, we pre-train multi-modal representations to predict
protein-protein interactions (PPIs). For model architectures, we replace the contact predictor with a
global pooling function and then classifier. PPI models have been trained for 300 epochs with all
aforementioned protein modalities as inputs, and with the binary cross entropy loss function, as the
warm start for inter-contact prediction since these two tasks do not share datasets.
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In the next auxiliary task of distance and angle (2D geometries) prediction, we replace the contact
predictor with distance/angle predictors of the similar architecture. We introduce this auxiliary task
via multi-task learning (without exploring the weights across the cross entropies across tasks).

Assessment. We evaluate the performance with the area under the precision-recall curve (AUPRC)
since in practice contacts are minorities among non-contacts [9]). To further understand what data
samples benefit more from multi-modalities, we split the test protein assemblies based on protein
docking difficulty levels [14] quantified by iRMSD: the interface root mean squared difference
between unbound and bound protein complex structures. We classify them into three levels of rigid,
medium difficult/flexible, and difficult/flexible cases.

Comparison. The two methods we compare to are ClusPro [22] an FFT-based rigid-body docking
method and [13] a GCN neural network-based machine learning method. For ClusPro, the indicators
in the residue pair-wise distance matrix used to calculate the AUPRC is the smallest distance between
any two heavy atoms across the two residues. The AUPRC of a random classifier for the target task
of contact prediction is 9.1% for training and validation dataset (due to under-sampling of negative
residue pairs) and 0.1% for the test set.

3 Results

3.1 Multi-Modal Protein Representations

Figure 2: AUPRC (%) distribution of test set. Random
score (in grey) shows the positive residual contact base-
line for the dataset.

Figure 2 shows the average validation and test
AUPRC scores (%) (with normalized scores via
divided by random performance shown in Ap-
pendix C). The scope of validation AUPRC dif-
fers a lot from the test; maximum AUPRC for
validation and test are 47.6% and 2.15% respec-
tively, due to the different positive/negative ratio
of labels (please also refer to the random base-
lines in grey). We observe that, by progressively
adding modalities, from protein sequences with
HRNN (H), then evolutionary profiles with a
BERT-like protein language model (HB), and
finally structure-aware intra-contact maps with
GAT (HBG), we improve the validation AUPRC
accordingly as well as the test. With respect to
model H, HBG improves AUPRC by 7.69%
for the validation and 18.75% for the test set.
Docking approach (top-1 prediction) compared
to machine learning had worse overall perfor-
mances but relatively high average due to few

outliers. We note that the test set is not necessarily when developing the docking method (including
its scoring functions).

We later also optimize the contact predictor architecture during the study (NHBG), mainly by ratio-
nally reordering the linear and non-linear layers, which leads to the currently best test performance
2.15%. Our maximum test AUPRC also surpass the SOTA test AUPRC score by 26.47% [13] which
only utilizes the single modality of intra-contact maps as inputs. The empirical evidences enable us
to conclude that, involving additional protein modalities as inputs benefits interface prediction.

More analyses. In Figure. 3, we showed the change of AUPRC for each test protein pair. (1)
AUPRC improvement by model HB with respect to H, due to the addition of a protein language
model, is described in Figure 3a. It shows that 83.3% of difficult, 73.3% of mid difficult and 41.4%
of rigid PPI samples have improved AUPRC. The protein language model in model HB provides
global evolutionary information and is less impacted by local sensitivity, which specifically helps the
difficult/flexible and medium difficult PPI category. (2) Whereas model HB uses multi-views of 1D
modality, model HBG uses both 1D and 2D modalities. Figure 3b shows that 66.6% of difficult,
33.3% of medium difficult and 69% of rigid PPI samples show AUPRC improvement when using
both residue and structure information. Though global evolutionary information shows a significant
improvement, the structural data helps the rigid cases the most. Although it loses some of the
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information about the 3D complex structure, the 2D intra-contact maps provide robust representations
by showing less sensitivity to conformational differences between predicted and actual structures.

(a) HB vs H (b) HBG vs HB
Figure 3: AUPRC improvement with additional modalities on increasingly difficult test PPI levels. We divide
the PPI into 3 groups: easy, mid-difficult and difficult group

3.2 Auxiliary Task Learning via Pre-Training or Multi-Tasking

Figure 4: Average AUPRC % of test set over
auxiliary task optimization models

The validation and test AUPRC scores average from evalu-
ated protein complexes, are shown in Figure 7. Clearly, we
do not observe the performance gains from any auxiliary
tasks. There are several conjectures for the negative results.
First, simultaneously predicting more fine-grained contact
distances and angles presumably is informative for contact
prediction but it is not. It might result from the limited
interface data: enforcing modals to output more compli-
cated (pseudo) predictions while with the same restricted
amount of data, might even hurt generalizability.

Second, PPI as the consequence of inter-protein contacts
also does not benefit. Although PPI data are more acces-
sible, the information encoded in the interaction (binary
outcome, interacting or not) is overly simplified to indicate
inter-contact maps (with the complexity proportional to
multiplication of protein pairs’ lengths). This indicates
both data quantity and quality are prerequisite for con-
structing synergistic auxiliary tasks, which is nontrivial for complicated protein complex data.

Lastly, analyses similar to Section 3.1 is conducted with no significant performance difference on
data across all difficulty categories. Results can be found in Appendix C.

4 Conclusions

In this paper we study how the multi-modal protein data and auxiliary predictive tasks can impact inter-
protein contact prediction. We first progressively add different modalities as sequence, evolutionary
and structural information. Our results show that multi-modalities provide significant benefits
over single modality to predict inter-contacts. We next introduce auxiliary tasks of protein-protein
interaction prediction (via pre-training) and inter-contact distance and angle prediction (via multi-task
learning). We numerically find that neither improves predictions, indicating that constructing and
incorporating synergistic auxiliary tasks for predicting protein interfaces remains challenging.
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Appendix

A Details on Data Curation

Extra efforts are paid to sanitize the DB5 unbound–bound structure data. Specifically if a protein
has multiple chains, in [13] residues in unbound receptor/ligand proteins were indexed according
to some undisclosed order of chain concatenation. The chain concatenation order is determined by
picking the one with the best scores of Needleman–Wunsch alignment between the [13] sequences
converted from hydrophobicity [23] vertex features (residues with hydrophobicity index -3.5 are
viewed as glutamic acids) and the DB5 sequences among all permutations of chains. In the meantime,
the alignment also indicated the correspondence of residues between the [13] sequences and the DB5
cleaned PDB file sequences. To generate the alignment between residues in the bound and unbound
sequences, for receptor/ligand respectively, we also used Needleman-Wunsch alignment between the
sequences from the unbound and bound structure files.

For labeling in the target task, we retrieve the ground-truth contact labels Clabel ∈ {0, 1}L1×L2 from
the bound structures and assign them nonzero values of ones only if the shortest distances between
non-hydrogen (heavy) atoms across two residues are below the threshold of 6Å [13, 24, 25, 26]. For
labeling the auxiliary task, we retrieved the 2D geometries from bound structures and discretize them.
Distance bins are (0-2Å, 2-2.4Å, 2.4-2.8Å, . . ., 19.6-20Å, and >20Å) plus two additional bins: no
contact (distance >20Å) and false mask for missing atom/residue in the diagonal line of contact map.
All the angles have been divided into 36 bins ranging from −π to π plus no contact and false mask.

B Details on Model Architectures

Figure 5: A detailed framework of our model architecture using separate encoders, a task-shared common MLP
layer, and task-specific MLP layers tuned by cumulative loss of all tasks.
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C Additional Results

(a) Validation set
(b) Test set

Figure 6: Average AUPRC (%) of validation and test set. Random score (in grey) shows the positive residual
contact baseline for each dataset.

Table 1: Normalized AUPRC divided by random performance.

Model Validation Test

H 4.85 16

SOTA - 17

HB 4.88 18

HBG 5.23 19

NHBG 5.05 21.5

(a) Validation set (b) Test set

Figure 7: Average AUPRC (%) of validation and test set over auxiliary task optimization models
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(a) Pre-trained vs NHBG (b) Multi-task model vs NHBG

Figure 8: AUPRC improvement with auxiliary task optimization compared to new HBG model. We divide the
test PPI into 3 groups based on increasing docking difficulty / conformational changes.
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