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Abstract

Construction of a scaffold structure that supports a desired motif, conferring protein
function, shows promise for the design of vaccines and enzymes. But a general
solution to this motif-scaffolding problem remains open. Current machine-learning
techniques for scaffold design are either limited to unrealistically small scaffolds
(up to length 20) or struggle to produce multiple diverse scaffolds. We propose to
learn a distribution over diverse and longer protein backbone structures via an E(3)-
equivariant graph neural network. We develop SMCDiff to efficiently sample scaf-
folds from this distribution conditioned on a given motif; our algorithm is the first
to theoretically guarantee conditional samples from a diffusion model in the large-
compute limit. We evaluate our designed backbones by how well they align with
AlphaFold2-predicted structures. We show that our method can (1) sample scaffolds
up to 80 residues and (2) achieve structurally diverse scaffolds for a fixed motif.

1 Introduction

A central task in protein design is creation of a stable scaffold to support a target motif — that is, a
particular structural protein fragment conferring biological function. Vaccines and enzymes have
already been designed by solving certain instances of this motif-scaffolding problem [19, 5, 14,
22]. However, successful solutions to this problem in the past have necessitated substantial expert
involvement and laborious trial and error. Machine learning (ML) offers the hope to automate, and
better direct this search. But existing ML approaches face one of two major roadblocks. First, these
methods do not build scaffolds longer than about 20 residues; for many motif sizes of interest, the
resulting proteins would be smaller than the shortest commonly-studied simple protein folds (35-40
residues) [9]. Second, these methods require hours of computation to generate a single plausible
scaffold [27, 1, 25]. Moreover, when a plausible scaffold is found, it remains to be experimentally
validated. Therefore, it is desirable to return not just a single scaffold but rather a set of scaffolds
exhibiting diverse sequences and structural variation to increase the likelihood of success in practice.

Generative models have been shown to capture a distribution over diverse protein structures [18].
But it is not clear how to handle conditioning (on the motif) using these approaches. Diffusion
probabilistic models (DPMs) [11] offer a potential alternative; not only do they provide a more
straightforward path to handling conditioning, but they have also enjoyed success generating small-
molecules in 3D [13]. We develop a novel motif-scaffolding procedure based on Sequential Monte
Carlo, SMCDiff, that repurposes an unconditionally trained DPM on protein 3D coordinates for
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Figure 1: Overview of the conditional generative modeling approach to the motif-scaffolding
problem. We train our new protein backbone diffusion model, ProtDiff, to generate realistic
protein backbone structures. Next, we run SMCDiff, our conditional sampling algorithm, with
ProtDiff to generate scaffolds (colored in red) conditioned on the motif (colored in blue). For self-
consistency evaluation, we use a pretrained fixed-backbone sequence-design model (ProteinMPNN
[6]) to generate the scaffold sequence from a sampled backbone. We then input the sequence to a
structure prediction model, in our case AlphaFold2 (AF2) [15], to generate the full protein structure
from the generated sequence. We compare the backbone of the predicted structure with the original
backbone structure using TM-score [28] and root-mean-square-distance (RMSD) for the motif.

conditional sampling. In our case, we condition on the motif structure, a task analogous to inpainting
[20]. Specifically, our motif-scaffolding generative framework has two steps as depicted in Fig. 1:
first we train a DPM (ProtDiff) to learn a distribution over protein backbones, and then we use
particle filtering (SMCDiff) with ProtDiff to inpaint arbitrary motifs.

Ours is the first machine-learning method to construct scaffolds longer than 20 residues around motifs

— we build up to 80 residues scaffolds on a test case. Beyond our progress on the motif-scaffolding
problem, we provide the following technical contributions: (1) we introduce a protein-backbone
generative model in 3D — with the ability to generate backbone samples that structurally agree
with AlphaFold2 [15] predictions, and (2) we develop a novel conditional sampling algorithm for
inpainting.

2  Method

A protein can be represented by its amino acid sequence and backbone structure. Let A be the set of
20 genetically-encoded amino acids. We denote the sequence of an N-residue protein by s € AV
and its C-a backbone coordinates in 3D by x = [x1,...,xy]T € RN3. A protein’s structure is a
function of its sequence, so we may write x(s). We divide the N residues into the functional motif
M and the scaffold S, such that M US = {1,2,..., N}. The goal is to identify, given the motif
structure x ¢, sequences s whose structure recapitulates the motif to high precision x(s) oq = xX1.



2.1 ProtDiff: A diffusion model of protein backbones in 3D

Implementing DPM for protein backbones requires constructing a noise prediction model which
we denote as eg(x(t), t). The DPM framework, first introduced in Ho et al. [11], is discussed in
Appendix A.1. In this section we describe ProtDiff, which corresponds to the choice of ey(x®), )
as a translation and rotation equivariant graph neural network tailored to modeling protein backbones.
The properties and functions of proteins are dictated by the relative geometry of their residues, and are
invariant to the coordinate system chosen to encode them. Recent work on neural network modeling
of 3D data has found, both theoretically and empirically, that neural networks constrained to satisfy
geometric invariances can provide inductive biases that improve generalization and training efficiency
[2]. Motivated by this observation, we parameterize €y by an equivariant graph neural network
(EGNN) [21], which in 3D is equivariant to transformations in the Euclidean group. It was shown
in Xu et al. [29] that if €y is equivariant to a group then samples from the diffusion process with a
invariant reference distribution will be equivariant to the same group.

Tailoring EGNN to protein backbones. Our EGNN implementation is tailored to protein backbones
and DPMs through the choice of edge and node features. To model every pairwise residue interaction,
we represent backbones by a fully connected graph. Each node in the graph is indexed by n €
{1,..., N}, and corresponds to a residue. We associate each node with coordinates x,, € R? and
features h,, € RP. For each pair of nodes n, n’ we define an edge and associate it with edge features
ann € RP. We construct our EGNN by stacking L equivariant graph convolutional layers (EGCL).
Each layer takes node coordinates and features as input, and outputs updated coordinates and features.
We take the input to the first layer to be the initial coordinates and features (x°, h°) = (x, h). Each
layer [ = 1,..., L defines an update as (x', h') = EGCL[x'~!, h!~1] where for each node n
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Oe, 01, and ¢y are fully connected neural networks, and y is a small positive constant included for
numerical stability. We write the output of EGNN after L layers as X = EGNN[x", h°]. In the
context of DPM, we predict the noise with the following parameterization:

eo(xD,t) =% — x| % =EGNN[x", h(t)]. (1)

Appendix A.3 discusses additional ProtDiff details including node and edge features.

2.2 SMCDiff: Conditional sampling in diffusion models by particle filtering

The second stage of our generative modeling approach to the motif-scaffolding problem is to sample
scaffolds conditioned on the motif. We build on the work of Song et al. [24], who introduced a
practical algorithm that generates approximate conditional samples. This strategy is to (1) forward
diffuse the conditioning variable to obtain X%T) ~ q(xs\l,{T) | XE&)), and then (2) for each ¢, sample

x@ ~ pp(xP | x T <), We call this approach the replacement method (following [12]) and

make it explicit in Appendix Algorithm 2. However, in Proposition B.1 we show that the replacement
method introduces irreducible approximation error that cannot be eliminated by making py more

expressive. Instead, we frame approximation of q(xg]) | XS&)) as a sequential Monte Carlo problem
that we may solve by particle filtering. Our key insight is that because pg(xg\t,l_l) | x(t)) provides

a mechanism to assess the likelihood of ng,l_l), we can prioritize noised scaffolds that are more
consistent with the motif. Particle filtering leverages this mechanism to provide a sequence of discrete

(t) | X%—l:T))

approximations to each py(xg that look ahead by this extra step. Finally, att = 0 we

T
Vil

have an approximation to pg (X(SO) | x . Then, using Proposition 2.1 below, we can obtain an

approximate sample from q(xg)) | XS&)). This framing permits the application of standard particle
filtering algorithms [8]. Algorithm 1 summarizes an implementation of this procedure that uses
residual resampling [7] to mitigate the collapse of the sequential approximations into point masses.
SMCDiff provides a tunable trade-off between computational cost and statistical accuracy through
the choice of the number of particles K. In our next proposition we make this trade-off explicit.



Proposition 2.1. Suppose that py exactly matches the forward diffusion process such that for every
XD pp(x® | xtHD) = ¢(x® | V) and consider any motifxg\o/,). Let x5 k be a particle
chosen at random from the output of Algorithm 1 with K particles. Then xXs i converges in

distribution to q(xg)) | XS&)) as K goes to infinity.

The significance of Proposition 2.1 is that it guarantees Algorithm 1 can provide arbitrarily accurate
conditional samples provided a large enough compute budget (determined by the number of particles).
To our knowledge, SMCDiff is the first algorithm for conditionally sampling from DPMs that can
provide arbitrary accuracy. Our proof of the proposition, which we leave to Appendix B, is obtained
from an application of standard asymptotics for particle filtering [4, Proposition 11.4].

3 Experiments

We empirically demonstrate the ability of our method to scaffold motifs and sample protein backbone
structures. We describe our procedure for evaluating backbone designs in Section 3.1. We demonstrate
the promise of our method for the motif-scaffolding problem in Section 3.2. We train a single instance
of ProtDiff and use it across all of our experiments. We limited our training data to single chain
proteins taken from PDB that are no longer than 128 residues as we found performance to be
substantially worse for larger proteins. Training details can be found in Appendix D. Additional
results are presented in Appendix F including results on unconditional sampling in Appendix F.2.

3.1 Insilico evaluation of designed backbones

Recent work [27, 18] has proposed to leverage highly accurate protein structure prediction neural
networks as an in silico proxy for evaluating computationally designed proteins. More specifically,
Wang et al. [27] jointly design protein sequence and structure, and validate by comparing the design
and AlphaFold2 (AF2) [15] predicted structures. Here, our goal is to assess the quality of scaffolds
generated independent of a specific sequence, so we treat fixed backbone sequence design as a
downstream step as in [18].

Our evaluation with AF2 is as follows. For each generated scaffold we use a C-« only version
of ProteinMPNN [6] with a temperature of 0.1 to sample 8 amino acid sequences likely to fold
to the same backbone structure. We then run AF2 with the released CASP14! weights and 15
recycling iterations. We do not include a multiple sequence alignment as an input to AF2. To assess
unconditionally sampled scaffolds, we then evaluate the agreement of our backbone sample with the
AF2 predicted structures using the maximum TM-score [30] across all generated sequences which we
refer to as scTM, for self-consistency TM-score. To assess whether prospective scaffolds generated
support a motif, we compute the root mean squared distances (RMSD) of the desired and predicted
motif coordinates after alignment and refer this metric as the motif RMSD. Appendix Algorithm 4
outlines the exact steps.

Because a TM-score > 0.5 indicates that two structures have the same fold [30], we say that a
backbone is designable if scTM > 0.5. The ability for AF2 to reproduce the same backbone from an
independently designed sequence is evidence a sequence can be found for the starting structure.

3.2 Motif-scaffolding via conditional sampling

We evaluated our motif-scaffolding approach (combining SMCDiff and ProtDiff) on motifs ex-
tracted from existing proteins in the PDB and found that our approach can generate long and diverse
scaffolds that support these motifs. We chose to first evaluate on motifs extracted from proteins
present in the training set because we knew that at least one stabilizing scaffold exists. We considered
2 examples with different topologies taken from PDB with ID 6exz and Strv, which are 69 and 118
residues long, respectively. For each topology, we chose a 15-25 residue segment as the motif (see
Appendix F for details). The remainder of each protein is one possible supporting scaffold. We
sought to assess if we could recover this and other scaffolds with the same size and motif placement.

'Biannual protein folding competition where AF2 achieved first place. Weights available under Apache
License 2.0 license.
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Figure 2: Motif-scaffolding case studies. (A) Example of two scaffold structures generated around a
segment of 5trv. Orange: desired input motif, Grey: AlphaFold-predicted structure of two scaffolds,
with the motif highlighted (purple). Both scaffolds were sampled using SMCDiff with scTM > 0.5.
(B,C) Motif RMSD for 5trv and 6exz test cases, its dependence on scaffold size, and comparison of
SMCDiff to two naive inpainting methods (fixed, replacement).

Based on prior work [27], we expected that building larger scaffolds around a motif would be more
challenging than building smaller scaffolds. To assess this length dependence, we expanded the
segment of used as the motif when running SMCDiff by including additional residues on each side.
In each case, though, we compute the motif RMSD over the minimal motif. In Figure 2B, we present
motif-scaffolding performance and its dependence on scaffold size for 5Strv, the longer of the two test
proteins. For the 5trv test case, the lower quartile of the motif RMSD for SMCDiff is below 1 A for
scaffolds up to 80 residues. Since 1 A is atomic-level resolution, we conclude that our approach can
succeed in this length range.

Figure 2A provides a visualization of our method’s capacity to generate long and diverse scaffolds.
The figure depicts two dissimilar scaffolds of lengths 34 and 54 produced by SMCDiff with 64
particles. Both scaffolds are designable and agree with AF2 (scTM > 0.5). Diversity is particularly
evident in the different orderings of secondary structures.

Figure 2B compares SMCDiff to two naive inpainting methods, fixed and replacement. In fixed,
the motif is fixed for every timestep ¢, and the reverse diffusion is applied only to the scaffold (as in
[31]); replacement is the method described in Section 2.2. In contrast to SMCDiff, these baselines
fail to generate a successful scaffolds longer than 50 residues on 5Strv, as determined by the location
of their lower quartiles.

We next applied these three inpainting methods to a harder target. We consider a motif obtained from
the respiratory syncytial virus (RSV) protein, which is not in the training dataset. We found that our
method failed to generate scaffolds predicted to recapitulate the motif (Appendix F). This motif has
been successfully scaffolded by the computationally intensive hallucination approach of [27]. Our
results indicate that our method does not improve uniformly upon this previous approach.

Compute cost. The computation of SMCDiff with 64 particles is approximately 2 minutes per
independent sample, while alternative methods fixed and replacement can produce 64 independent
samples in the same time. By contrast, the hallucination approach of [27] involves running a Markov
chain for thousands of steps, and has runtime on the order of hours for a single sample [1].

4 Discussion

The motif-scaffolding problem has applications ranging from medicine to material science [16], but
remains unsolved for many functional motifs. We have created the first generative modeling approach
to motif-scaffolding by developing ProtDiff, a diffusion probabilistic model of protein backbones,
and SMCDiff, a procedure for generating scaffolds conditioned on a motif. Although our experiments
were limited to a small set of proteins, our results demonstrate that our procedure is the first capable
of generating diverse scaffolds longer than 20 residues with computation time reliably on the order of
minutes or less. Our work demonstrates the potential of machine learning methods to be applied in
realistic protein design settings.

Modeling limitations. Our present results do not indicate our procedure can generalize to motifs that
are not present in the training set. We believe improvements in protein modeling could provide better



inductive biases for generalization. For example, ProtDiff sees only 3D backbone coordinates and is
blind to the the orientation of backbone residues As a consequence, ProtDiff is reflection symmetric
and generates left-handed helices (Appendix C), which do not stably occur in natural proteins.
Additionally, ProtDiff does not explicitly model primary sequence or side-chains. Hoogeboom
et al. [13] demonstrate the benefits of modeling sequence information in small molecules, jointly
modeling sequence and structure in a single model could lead to improved designability of protein
scaffolds and backbones as well.
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A Method details

A.1 Diffusion probabilistic models

Our approach to the motif-scaffolding problem builds on denoising diffusion probabilistic models
(DPMs) [23]. We follow the conventions and notation set by [11], which we review here. DPMs
are a class of generative models based on a reversible, discrete-time diffusion process. The forward
process starts with a sample x(°) from an unknown data distribution ¢, with density denoted by
q(x(o)), and iteratively adds noise at each step t. By the last step, T, the distribution of x(7) is
indistinguishable from an isotropic Gaussian: x() ~ N(x(T);0,T). Specifically, we choose a
variance schedule 3, 3 ... B(T) and define the transition distribution at step ¢ as ¢(x®) |

x(t—l)) :N(X(t); 1_ 5(t)x(t—1)75(t)1),

DPM:s approximate g with a second distribution py by learning the transition distribution of the reverse
process at each t, pg(x(= | x()). We follow the conventions set by [11] in our parameterization
and choice of objective. In particular, we take pg(x*~1) | x() = N(xt=1; 1y(x®), t), BOT)
with g (x(0,1) = A (xm - A, t)) La® = 1— 8O, and a0 = [['_, a®,
We implement ¢4 (x(*), ) as a neural network. For training, we marginally sample x(*) ~ ¢(x(®) |
x(©) from the forward process as x* = vVa®x(© 4+ /1 — a®¢ and minimize the objective
T3 By sy [lle = ea(x®),£)]|] by stochastic optimization [11, Algorithm 1. To gener-

ate samples from py (x(o)), we simulate the reverse process. That is, we sample noise for time 7" as

x(T) ~ N(0,T), and then for each t = T — 1,...,0, we simulate progressively “de-noised” samples
as x() ~ pp(x® | x(tHD),



A.2 Additional ProtDiff details

We perform a scaling operation that transforms the input protein coordinates to be in nanometers rather
than Angstroms by dividing by 10. Because typical proteins are on the order of 2—10 nanometers in
diameter, this scaling brings the backbones to a spatial scale more similar to an isotropic Gaussian
with unit variance.

‘We now describe our choice of node and edge features. Our choice is motivated by the linear chain
structure of protein backbones; residues close in sequence are necessarily close in 3D space. To allow
this chain constraint to be learned more easily, we fix an ordering of nodes in the graph to correspond
to sequence order. We include as edge features positional offsets, which we represent using sinusoidal
positional encoding features [26] as

n—n',1
B #l ) sin (z - w/N2*/P) k mod2=0

nn = » where (k) = {cos (z- 7T/N2'(k’1)/D) , kK mod2=1.
¢(n—n', D)

For node features, we similarly use a sinusoidal encoding of sequence position as well as of the
diffusion time step ¢ (following [17]) as

¢(n,1) o(t,1)
ho(t) = : +R :
¢(n, D) ¢(t,D)

where R is a D x D orthogonal matrix chosen uniformly at random. Intuitively, applying R transforms
the time encoding to be orthogonal to the positional encoding.

)

A.3 SMCDiff algorithm

Algorithm 1 SMCDiff: Particle filtering for con-
ditionally sampling from unconditional diffusion
models

1: Input: x'{) (motif), K (# particles)
2: // Forward diffuse motig

3 X ( M | M)

4:

5: // Reverse diffuse particles

6: Vk, XECT) g po(x(T))

7. fort=1T,...,1do

8: /I Replace motif

90:  Vk, x{ « [x\\],x4)]

10:

11: // Re-weight based onfcs\t,l_l)

12: vk, w,(:) <—p9()“(5\t/171) | Xl(?)
Bk 0 e o) 5K 0
14: fcgt)K ~ Resample(zbgt:)K7 xgt)K)
15:

16: // Propose next step

17: vk, x,(ctfl) e po (x| igf))
18: end for

19: Return st(),)1 K

B Conditional sampling: SMCDiff details and supplementary proofs

We here provide additional details related to SMCDiff and the replacement method described in
Section 2.2. Details of the replacement method [24] and our analysis of its error are in Appendix B.1.

10



Algorithm 2 Replacement method for approx-
imate conditional sampling

Input: xﬁgl) (motif)

// Forward diffuse motif
< (1:T 1T 0)
Xy T ™~ 4q (x M | X/\A)

// Reverse diffuse scaffold
x(T) ~ py (X(T))
fort=1T,...,1do
/I Replace with forward diffused motif

e <_[ (t) g)]

A A i Nl

_—
N s oY

/I Propose next step
x(t=1) pg(x(t—l) | X(t))
: end for

: Return xfs()), x(:T)

—
AW

Appendix B.2 provides details of our sampling method, SMCDiff, including (1) a proof of Propo-
sition 2.1 and (2) details of the residual resampling step. We leave technical proofs and lemmas to
Appendix B.3.

Notation. In the following, we require notation that is more precise than in previous sections. For
eacht = 0,...,T, welet ¢;(-) and p,(-) denote the density functions of x(*) according to the forward
process and to our neural network approximation of the reverse process, respectively. We denote

densities restricted to the motif and scaffold with subscripts M and S. For example, we here write

DM t(xgvi) whereas we wrote pe(xs\t)‘) in the main text. We write (random) conditional densities as

amae(- | x Mfl)) and write the (deterministic) conditional density for an observation xs\t,fl) = T g aS

-1
(- | x5 = 2p).

An object of interest will be the Kullback-Leibler (KL) divergence. We write
KL [g:()|lpe(-)] == [qi(x)log (T; dx, where log(-) is the natural (base e) logarithm. We
will also encounter the expected KL between conditional densities, which we will write as
EKL [g;(- | x® D) lpe(- [ xTD)] = [qo1(@)KL [q:(- [ 7Y = 2)llpe(- | x0T = 2)] da,
where the outer expectation is taken Wrth respect to the unconditional density associated w1th
first argument of EKL [-]|-] .

B.1 The replacement method and its error

The replacement method was proposed by [24] for the task of inpainting in the context of score-based
generative models. Work [12] concurrent with the present paper applied the replacement method
to DPMs. Although [24] notes that this approach can be understood as approximate conditional
sampling, they provide no discussion of approximation error. We here show that the replacement
method introduces irreducible error that is inherent to the forward process. Algorithm 2 provides an
explicit description of the replacement method.

The first return of Algorithm 2, foO), is used as a putative inpainting solution or approximate

conditional sample. But Algorithm 2 additionally returns subsequent time steps, x('7). We denote
the approximation over all steps implied by the generative procedure in Algorithm 2 by pRep1(~ |

xs\o,l) = 2 0) and compare it to the exact conditional, gq.7 (- | x! M = x »q). We here consider error in

KL divergence because it permits an analytically tractable and transparent analysis. We additionally
consider the idealized scenario where po.r(-) perfectly captures the reverse process. Under this
condition, the forward KL takes a surprisingly simple form.

11



Proposition B.1. Suppose that p.1(-) exactly matches the forward diffusion process such that for
every z, py(- | xUHD) = 2) = q,(- | xY = z). Then for any motif z p,,

KL [m( x5 = a1 x5 = o)
2
= Z EKL [(Js xD X O — 2 llgsa (- | X(”l))} .

Proposition B.1 reveals that the replacement method introduces approximation error that is intrinsic
to the forward process and cannot be eliminated by making po.r(-) more expressive. Although the
individual terms in the right hand side of Equation (2) are not analytically tractable in general, in the
following corollary we show that this approximation error can be non-trivial by considering a special
case. For this following example, we depart from the earlier assumption that x is in 3D, and consider
scalar valued x,; and xgs.

Corollary B.2. Suppose [x Mo xg )] is bivariate normal distributed with mean zero, unit variance,
and covariance p. Further suppose that qs +(- | xg))) = N(s Vd(t)xg)), 1—a®) and qs t11(- |

xg)) =N(;/1- ﬁ(f“)xg), B as in Section 2, where B4tV and &) are between 0 and 1.
Then

1
EKL {q&t(. | Xgﬂ)an\(L))HQS, (- |x(t+1))} > -3 <log( ﬁ(t+1 (t) 2) +/3(t+1) (t) 2)

We note two takeaways of Corollary B.2. First, as we might intuitively expect, this error can be large
when significant correlation in the target distribution is present. Second, we see that the approximation
error can be larger at earlier time steps, when a® is closer to 1.

B.2 SMCDiff details and verification proof of Proposition 2.1

The idea behind the SMCDiff procedure in Algorithm 1 is to break sampling of Xgo) ~gs,o(-| XS&))
into three stages:

1. Draw Xg\l,t:T) ~qmar(- | X(O))

2. Draw xfsl:T) ~gsar(c | x\ T)).
3. Draw XESO) ~qso(-| x\: T), S:T))

(U

If all three steps were performed exactly, by the law of total probability xg~ in step (3) would

(marginally) be an exact sample from gs o(- | x M) As such, SMCDiff aims to perform step (1) and
approximate steps (2) and (3). Step (1) corresponds to forward diffusing the motif in lines 2-3 and is
exact because we diffuse according to q.

Step (3) corresponds to line 17 in the last iteration (when ¢ = 1). Specifically, to sample from
0:T) _(1:T)
’ XS )

as.0(- | X
implies that gs o(- | XS&:T),XSZT))

we make three observations. (i) The Markov structure of the forward process
=gs,0(- | XS&:D, xg)) (ii) By the assumption that the forward

and approximated reverse process agree, we have gs (- | x (0:1), g)) = pso(- | x(0 D, g))
(iii) Finally, because p;(- | x(*+1)) factorizes across M and S for each t, pso(- | x(O 1) (1)) =

pso(- | x! M , xg )) As a result, under the assumptions of the proposition, we may sample from

gs.o(- | x(0 ) xg T)), and perform step (3) exactly as well.

Step (2) is the only non-trivial step, and cannot be performed exactly. The challenge is that although
the reverse process approximation, ps 1.7 (- | x| M )), is well-defined, computing it explicitly involves
an intractable, high-dimensional integral.

The sequential Monte Carlo approach of SMCDiff, then, is to circumvent this intractability by
constructing a sequence of approximations. Foreacht =T,7T —1,...,1, we approximate ps (- |
xg\t,l_l:T)) (and thereby gs ;(- | x*~17))) with K weighted atoms (the particles). We denote these

12



Algorithm 3 Residual Resample

1: Input: w,.x (weights), x1.x (particles)
2: VEk, (Ck,Tk> — (LKwa,Kwk — I_K’u};gJ)

3 iC: [Xl,"';xlau',xK,...,XK

—— —_—
Cc1 CK

4 Re K-S0 c

5: [i1,...,ir] ~ Multinomial(ry.x, R)

6: XRp < [Xiyy- - Xig)

7: X = concat(X g, X¢)

8: Return x

approximations (which are implicit in Algorithm 1) by IP’(I?( yi=K b1 ~(t)é(  x. 5. k) where each

2 and xP

and x g’ are as in Algorithm 1, and §(-; x) denotes a Dirac mass at x. In particular, Pg) (-)isan

approx1mat1on to ps.1(- | XS&:T)). Proving the proposition amounts to showing that in the limit as

K goes to infinity, each IP’(I? (+) converges weakly to ps 1 (- | XS&:T)), which by assumption is equal

t0 gs.1(- | xg\o,{T)). This weak convergence follows from standard asymptotics for particle filters [4,

Proposition 11.4], which we make explicit in Lemma B.1. As a result, if we perform step (3) with
(1) ~ ]P’%)( -), then this lemma implies that X(SO) converges in distribution to qg,o(xg)) | XS&)), since
(1) gso(x s) | x M) , xfs )) is continuous in xgl) and (ii) xg)) is independent of Xg\o/l) conditional on

x(1),

1)

Recall that to show the proposition, it was to sufficient to show that Pg( converged weakly to

gs1( | XE&T)); this implied that the K particle returned by Algorithm 1 would then converge in
distribution to gs o(- | X.(/&:T)) which, by the law of total probability, implied that they marginally
converge to ¢so(- | xgel)). However, while the particles return by Algorithm 1 may be treated as

exchangeable, they are not independent, because they depend on shared randomness in xs\l/;T). To
obtain approximate samples that are independent, it is necessary to run Algorithm 1 multiple times.

Residual resampling. Line 14 of Algorithm 1 indicates a Resample step. In particle filtering,
resampling steps (or branching mechanisms [8, Chapter 2]) filter out particles with very small
weights, and replace them with additional copies of particles with large weights. Notably, the
resampling step is the only point of departure of Algorithm 1 from the replacement method; without
resampling, the algorithms behave identically. While a variety of possible branching mechanisms
exist, we use residual resampling (Algorithm 3) in our implementation for its simplicity.

B.3 Proofs and lemmas

Particle filtering lemma with technical conditions

Lemma B.1. Consider P(l Zk 1 Wb (+ XS k) where Wy, and X(Sl)l:K are as constructed in

Algorithm 1. Assume the conditions of Proposition 2.1. Then IP)([? converges weakly to ps 1 (- | X T))

as K goes to infinity. That is, for any Borel measurable A, limg _, Pg) (A) = jA psa(z |
xggiT))das.

Proof. The proof of the lemma follows from an application of standard asymptotics for particle
filtering [4, Proposition 11.4]. In particular, to apply Proposition 11.4 we use the formalism of
Feynman—-Kac (FK) models, following the notation of [4, Chapter 5]. Though typically (and in [4]) FK
models are defined via a sequence of approximations at increasing time steps, we consider decreasing
time steps because we are approximating the reverse time process. We take the initial distribution
as MT(ng)) = ps, T(st ), the transition kernel as Mi(xg (t+1) xg)) = p37t(xg) | x(*1) and

the potential functions as G(x fs)) DM, t— 1(x§w 2 | x(1)). The sequence of FK models, Q;, then

13



correspond to

t
Qulxs™) = L Mr(x§)Gr(xs") [] Milxs™ . x)Gixg))
j=T—

7 1

for each ¢, where L, is a normalizing constant.

By substituting in our choices of M; and G, we can rewrite and simplify Q; as

t
Qt(x‘(st:T)> Ly 'ps T(X‘(s‘ ))pMT 1(x (MTfl) |X(T)) H p&i(X? |X(i+1))pM,i71(X§ql) | X(i))
=T

— L7 psr (x5 ) prr 1 (x| M )p g (55D | %)
- pt:T(X(t'T) ‘ x(tfl))
x Ps.t T(XS :T) | (t— 1T))’

where lines 3 and 4 drop multlphcatlve constants that do not depend on xfg ™). From the above

(b1 T)) and in particular that Ql(x S ) =

. As such, the desired convergence in the statement of the lemma is equivalent to

derivation, we see that each Qt(x‘S ) = ps, t(xs) | x
1) | (0:T)

bs, 1(X5 | XM )

that IP’%) converges to Q.

Chopin and Papaspiliopoulos [4, Proposition 11.4] provide this result for the generic particle filtering
algorithm (see [4, Algorithm 10.1], which is written in the FK model form described above). More
specifically, Proposition 11.4 proves almost sure convergence of all Borel measurable functions of

]P’g?, which implies the desired weak convergence.

Although the proof provided in [4] is restricted to the simpler, but higher variance, case where the
resampling step uses multinomial resampling, the authors note that [3] proves it holds in the case of
residual resampling (which we use in our experiments) as well. O

Replacement method error — lemmas and proofs
We here provide proofs of Proposition B.1 and Corollary B.2.
Proof of Proposition B.1:

Proof. The result obtains from recognizing where the replacement method approximation agrees
with the forward process, using conditional independences in both processes, and applying the chain
rule for KL divergences. We make this explicit in the derivation below, with comments explaining
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the transition to the following line.

KL [qrr(- | x) = 20 [P (1% = 200)

(1T ) (0)
— /ql:T(x(l:T) ‘XS\O/I) _ .’ITM)IOg qfl{.eTl(x ‘X/E/(l)) JIM) dl'(LT)
pl:iP (x(lzT) |XM =2xMm)

// By the chain rule of probability.

(1:T) | (0 amar(e” | X0 = 2m)
= q1:T(I ‘ X/\/[ = IM) |:10g Repl, (1:T) (0)
prr (Th [ X = 2Mm)

(1:T) | XS&:T) _ IS&:T))

gs,1.7(Tg }
Repl 1:T 0:T 0:T
S g™ x0T =24

// By the agreement of ¢ and prep1 on the motif, and the chain rule of probability.

(1:T) | . (0) as T(‘TES‘T) | x
Z/QLT(JJ ] xy ZxM)[l ;

(0:T) _ _(0:T)
og M=)
p?epl(mgf) | X.(A(il:T) _ J).(/&T))

T-1 t t+1 t+1 0:T 0:T

Z lo ‘Js,t(x(s) |st ) = 33(5 )aX.(M )= 9‘75\4 )) de(1T)
epl 1 1 0:T 0:T

P} pg’tp (x‘(st) | Xg+ ) — x‘(SH' ),xg\/l ) — xgvl ))

// Because gs 7(-) = pgi,‘fl(-) = N(+;0, 1) and the assumption that py matches q.

= 1 ! q. ®) (t4+1) _ .(t+1) (0) (0)
: 2 : St\T X = , X
/QLT(x(L ) ‘ XS\OA) - -TM)[ 10g ’t( S ‘ M
t=1

=Z)) AT
qs)t(x‘(st) ‘ X(t+1) — ;I;(t'f‘l))

T-1
= 37 BKL [as- X, x) = o) s (| %))
t=1

Proof of Corollary B.2:

The proof of the corollary relies of on a lemma on the variances of the two relevant conditional
distributions. We state this lemma, whose proof is at the end of the section, before continuing. For
notational simplicity, we drop the scripts and annotations on @® and 5(**1) and instead write o and
B, respectively.

Lemma B.2. Suppose xs\o,[), xg), and xgﬂ) are distributed as in Corollary B.2. Then Var[xg) |

Xngl)] = B and Var[xg) | ngrl),xg&)] < B(1 - Bp*a).

Now we provide a proof of Corollary B.2.

Proof. First recall that

L(, R ot ()
S L R
1 2
1 2 2
> = (lo % + % — 1)
2 o? " o2



and observe that this lower bound is monotonically decreasing in o3 for 0% < ¢3. Therefore

EKL [gs.(- | x5, x\)llas, <|xfé*”>]

/QM 0(955\/1))% t+1(933+1) | @ )[

KL [QS (] x8D = 20D %O = 207 gs (- | xED = 2]

9

}dxsa)scgﬂ)

> /qM,o(x(A(Z))qs,w (st) | @ )[

KL [N (0, Varfe§ | 2™ = 2™ (= 2 QDINV(O, Varlx§) | x5 = 2]
}dxgel)xg-‘_l)
> KL [N(0, B(1 — Bp*a))[IN(0, B)]

Sl B B(1 — Bpa)
=3 (log B-Bra T B 1)

— (log(1 - Bp*a) + Bp*a)

l\D\»—l

where the second inequality follows from Lemma B.2, and the monotonicity of the KL in o%. O

Proof of Lemma B.2:

Proof. That Var[xs | x Hl)] = [ follows immediately from that [xg),xgﬂ)] is marginally

bivariate normal distributed with covariance /1 — .

(t+1 0
|X+) ()]

®) xg“)] | M) is bivariate

The upper bound on Var[ is trickier. Observer that [xg”,

Gaussian and that

Var

xs’ x| = 1-pa VI=B(1-p*a)
(t+1) VI=B(1 - p*a) 1+ Bp*a—pal”

As such, the conditional variance may be computed in closed form as Var[xg) | xg+1), XS&)] =
B(1-p?a)+(1-B)(1-p?a) (1 - (1 - p2a)/(1 - p*a + Bp*a)) . Butsince (1—p?a) /(1 - p*a+

Bp2a) > 1-(Bp2a)/(1- p%a) and therefore 1 — (1 pa) /(1 — pa-+ Bp?a) < (Bp2a)/(1- pa)
we can write

1— 2
Varle! x4 xG] = 60 - pa) + (1= 1 - ) (1 o0

(1= 10+ (1= A)(1 - Pa) 225

B o
B(1 = p*a) + (1 - B)Bp*a
B(1 = Bp*a).

IN

C Detecting chirality

Section 4 noted the limitation of ProtDiff that it can generate left-handed helices (which do not
stably occur in natural proteins). Figure 3 presents two such examples. We additionally note that, as
in Figure 3 Left, model samples can include multiple helices with differing chirality.
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Figure 3: Two examples of protein backbone samples with incorrect left handed helices.

D Training details

ProtDiff uses 4 equivariant graph convolutional layers (EGCL) with 256 dimensions for node and
edge embeddings. The training data was restricted to single chain proteins (monomers) found in PDB
and lengths in the range [40, 128]. We additionally filtered out PDB with >5A atomic resolution.
This amounted to 4269 training examples. Training was performed using the Adam optimizer with
hyperparameters learning_rate=le-4, §; = 0.9, and 83 = 0.999. We trained for 1,000,000
steps using batch size 16. We used a single Nvidia A100 GPU for approximately 24 hours. We
implemented all models in PyTorch. We used the same linear noise schedule as Ho et al. [11] where
Bo = 0.0001, Br = 0.02, and T" = 1024. We did not perform hyperparameter tuning.

E Additional metric details

Self-consistency algorithm. Section 3.1 described our self-consistency metrics for evaluating the
designability of backbones generated with ProtDiff. Algorithm 4 makes explicit the procedure we
use for computing these metrics.

Algorithm 4 Self-consistency calculation

Input: x € RV:3
1: fort€1,...,8do
2 S; < ProteinMPNN(x)
3 %; — AF2(s;)
4: end for
5: sc_tm < max;e1,.. sTMscore(X;,x)
Output: , sc_tm

Using dihedral angles to calculate helix chirality. Natural proteins are chiral molecules that
contain only right-handed alpha helices. However, because the underlying EGNN in our model
is equivariant to reflection, it can produce samples with left-handed helices. While examining
model samples, we additionally observed samples with both left and right-handed helices (Figure 3),
even though in theory the EGNN should be able to detect and avoid the chiral mismatch. Left-
handed helices are fundamentally invalid geometries in proteins and represent a trivial failure mode
when calculating the self-consistency and other metrics. Samples with a mixture of left and right-
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handed helices are especially problematic because they cannot be corrected simply by reflecting the
coordinates. As such, it is important to identify and separate samples with mixed chirality.

To detect chiralty, we compute the dihedral angle between four consecutive C-« atoms as a chiral
metric to distinguish between the two helix chiralities. Algorithmically, for every C-« i, we calculate
the dihedral between C-« i, i+1, i+2, and i+3. C-« i with dihedral angles between 0.6 and 1.2
radians are classified as right-handed helices, and angles between -1.2 and -0.6 are classified as
left-handed helices, with everything else classified as non-helical. Because C-a atoms in native
helices tend to form contiguous stretches longer than one residue in the primary sequence, helical
stretches less than one amino acid were removed. This filtering is meant to help avoid accidentally
counting the occasional isolated backbone geometry that falls into a helical bin as a true helix. Finally,
for all C-«v atoms 1 that are still categorized as part of a helix, the associated i+1, i+2 and 1+3 C-«
atoms are also counted as part of that helix.

F Additional experimental results

In this section, we describe additional results to complement the main text. We provide a description
of the motif targets in Section 2.2, along with results of a scaffolding failure case in Appendix F.1.
We provide results when the model is tasked with unconditional sampling when no motif is provided
(and which ProtDiff was originally trained on). To understand the qualitative outcomes of scTM,
we present additional results of backbone designs, their AF2 prediction, and most closely related
PDB parent chain for different thresholds of scTM in Appendix F.3. We provide additional examples
of latent interpolations in Appendix F.4. Finally, Appendix F.5 presents a structural clustering of
unconditional backbone samples; this result provides further evidence of ProtDiff’s ability to
generate diverse backbone structures.

6ebr

Figure 4: Structures used for motif-scaffolding test cases. Native structures (grey) and their motifs
(orange) that were used for the motif-scaffolding task are shown.

F.1 Additional motif-scaffolding results

We here provide additional details of the motif-scaffolding experiments described in Section 3. Table 1
specifies the total lengths, motif sizes, and motif indices of our test cases. In Figure 4 we depict the
structures of the native proteins (6e6r and 5trv) from which the motifs examined quantitatively in
the main text were extracted. Figure 5 analyzes commonly observed failure modes of ProtDiff
backbone samples involving chain breaks, steric clashes, and incorrect chirality.

Figure 6 presents quantitative results on a harder inpainting target. In this case, the motif is defined
as residues 163—181 of chain A of respiratory syncytial virus (RSV) protein (PDB ID: 5tpn). We
attempted to scaffold this motif into a 62 residue protein, with the motif as residues 42—62. We
chose this placement because previous work [27] identified a promising candidate scaffold with this
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motif placement. In contrast to the cases described in the main text, for which a suitable scaffold
exists in the training set, SMCDiff and the other inpainting methods failed to identify scaffolds that
recapitulated this motif to within a motif RMSD of 1 A.

Table 1: Motif-scaffolding test case additional details.

| Origin/ Protein | Total Ilength [ Motif size (residue range) |
6e6r 55 13 (23-35)
Strv 118 21 (42-62)
RSV (PDB-ID: 5tpn) 62 19 (16-34)

A
.
=
v

/

Figure 5: Failure modes in ProtDiff backbone samples. (A) Backbone clashes and chain breaks.
The C-ov atoms can be spaced further than the typical 3.8A between neighbors, resulting in a chain
break (dashed lines). Additionally, backbone segments can be too close to each other, resulting in
obvious overlaps and clashes. (B) Backbones with a mixture of left (circled in red) and right (circled

in green) handed helices. These chirality errors cannot be corrected simply by mirroring the sampled
backbone.
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Figure 6: Additional inpainting results on a more challenging motif extracted from the respiratory
syncytial virus (RSV). The three inpainting methods are evaluated as described in Section 3.

F.2 Unconditional sampling results

We next investigate the origins of the diversity seen in Figure 2 by analyzing the diversity and
designability of ProtDiff samples without conditioning on a motif.

We first check that ProtDiff produces designable backbones. To do this, we generated 10 backbone
samples for each length between 50 and 128 and then calculated scTM for each sample. In Fig. 7A,
we find that 11.8% of samples have scTM > 0.5. However, the majority of backbones do not pass this
threshold. We also observe designability has strong dependence on length since we expect that longer
proteins are harder to model in 3D and design sequences for. We separated the lengths below 128
residues into two categories and refer to them as short (50-70) and long (70—-128). Our results in
Figure 7A indicate 17% of designs in the short category are designable vs. 9% in the long category.
In Figure 12, we present a structural clustering of these designable backbones; we find that these
backbones exhibit diverse topologes.
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Figure 7: Protein backbone samples from ProtDiff. (A) Density plot of scTM for different length
categories (50-70, 70-128). The dashed line at scTM = 0.5 indicates the threshold of “designability”,
points to the right are considered “designable” (see text). (B) Scatter plot of scTM and the highest
TM-score of each sample to all of PDB. Points represented as a grey “x” are detected to contain an
(invalid) left-handed helix. Dashed lines indicate thresholds scTM = 0.5. (C) Example of a designable
backbone sample (rainbow) with scTM > 0.5 (boxed in red in panel B) to its closest PDB example

(6c59, grey) with a TM-score of 0.54.

We next sought to evaluate the ability of ProtDiff to generalize beyond the training set and produce
novel backbones. In Figure 7B each point represents a backbone sample from ProtDiff. The
horizontal coordinate of a point is the scTVM, and the vertical coordinate is the minimum TM-score
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across the training set. We found a strong positive correlation between scTM and this minimum
TM-score, indicating that many of the most designable backbones generated by ProtDiff were a
result of training set memorization. However, if the model were only memorizing the training set, we
would see TM-scores consistently near 1.0; the range of scores in Figure 7B indicate this is not the
case — and the model is introducing a degree of variability. Figure 7C gives an example of backbone
with scTM > 0.5 that appears to be novel. Its closest match in the PDB has TM-score = 0.54.

Fig. 7B illustrates a limitation of our method: many of our sampled backbones are not designable.
One contributing factor is that ProtDiff does not handle chirality. Hence ProtDiff generates
backbones with the wrong handedness, which cannot be realized by any sequence. Fig. 7B shows
that 45% of all backbone samples had at least one incorrect, left-handed helix. Of these, most have
scTM < 0.5. We describe calculating left-handed helices in Appendix E.

Fig. 8 illustrates an interpolation between two samples, showing how ProtDiff’s outputs change as
a function of the noise used to generate them. To generate these interpolations, we pick two backbone
samples that result in different folds. For independent samples generated with noise ¢(*:7) and &(©7)

we interpolate with noise set to \/ae(%T) + /T — aé(%T) for o between 0 and 1. The depicted values
of « are chosen to highlight transition points with full interpolations included in Appendix F.4. A
future direction is to exploit the latent structure of ProtDiff to control backbone topology.
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Figure 8: Interpolations between ProtDiff samples demonstrating the diversity of backbones
captured. Top: 64-residue example. Bottom: 56-residue example. ProtDiff samples are determined
by the Gaussian noise across all steps, (%7,

F.3 Qualitative analysis of scTM in different ranges

In this section, we give intuition for backbone designs and AF2 predictions associated with different
values of scTM to aid the interpretation of the scTM results provided in Section 3. Figure 9 examines
a possible categorization of scTM in three ranges. The first two rows correspond to backbone designs
that achieve scTM > 0.9. We see the backbone designs in the first column closely match the AF2
prediction in the second column. A closely related PDB example can be found when doing a similarity
search of the highest PDB chain with the highest TM-score to the AF2 prediction. We showed in
Figure 7B that scTM > 0.9 is indicative of a close structural match being found in PDB.

The middle two rows correspond to designs that achieve scTM ~ 0.5. These are examples of backbone
designs on the edge of what we deemed as designable (scTM > 0.5). In these cases, the AF2 prediction
shares the same coarse shape as the backbone design but possibly with different secondary-structure
ordering and composition. In the length 69 example, we see the closest PDB chain has a TM-score of
only 0.65 to the AF2 prediction but roughly the same secondary-structure ordering as the backbone
design. The length 100 sample is a similar case of AF2 producing a roughly similar shape to the
backbone design, but has no matching monomer in PDB.

The final category of scTM < 0.25 reflects failure cases when scTM is low. The AF2 predictions in
this case have many disordered regions and bear little structural similarity with the original backbone
design. Similar PDB chains are not found. We expect that improved generative models of protein
backbones would not produce any samples in this category.
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F.4 Additional latent interpolation results

We here provide additional latent interpolations. Figures 10 and 11 depict interpolations for between
model samples for lengths 89 and 63, respectively.

a = 0.800 a = 0.867 a = 0933 a = 1.000

Figure 10: Latent interpolation of length 89 backbone sample from oo = 0 to 1.
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Figure 11: Latent interpolation of length 63 backbone sample from oo = 0 to 1.

F.5 Structural clustering

All 92 samples with scTM > 0.5 were compared and clustered using MaxCluster [10]. Structures
were compared in a sequence independent manner, using the TM-score of the maximal subset of
paired residues. They were subsequently clustered using hierarchical clustering with average linkage,
1 - TM-score as the distance metric and a TM-score threshold of 0.5 (Figure 12 A).
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Figure 9: Qualitative analysis of unconditional backbone samples from ProtDiff. The first column
displays backbone designs from ProtDiff and their sequence lengths. The second column displays
the highest scTM scoring AF2 predictions from the ProteinMPNN sequences of the corresponding
backbone design in the first column. The third column displays the closest PDB chain to the AF2
prediction in the second column with the PDB ID and TM-score written below. The third column is
blank for the last two rows since no PDB match could be found. See Appendix F.3 for discussion.
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Figure 12: Clustering of self-consistent ProtDiff samples. The distance matrix is 1 - TM-score
between pairs of samples, and ranges from O (exact matach) to 1 (no match). Dendrograms are from
hierarchical clustering using the average distance metric. Designs on the right are cluster centroids.
Gray lines connect larger clusters with more than one member to its centroid, while the remaining
designs are from a random selection of the remaining single-sample clusters. Protein backbones are
colored from blue at the N-terminus to red at the C-terminus.

25



	 
	Introduction
	Method
	ProtDiff: A diffusion model of protein backbones in 3D
	SMCDiff: Conditional sampling in diffusion models by particle filtering

	Experiments
	In silico evaluation of designed backbones
	Motif-scaffolding via conditional sampling

	Discussion
	Appendix

	 Appendix
	Method details
	Diffusion probabilistic models
	Additional ProtDiff details
	SMCDiff algorithm

	Conditional sampling: SMCDiff details and supplementary proofs
	The replacement method and its error
	SMCDiff details and verification proof of prop:asymptoticaccuracy
	Proofs and lemmas

	Detecting chirality
	Training details
	Additional metric details
	Additional experimental results
	Additional motif-scaffolding results
	Unconditional sampling results
	Qualitative analysis of scTM in different ranges
	Additional latent interpolation results
	Structural clustering



