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Abstract

Designing functionally interesting biological sequences pose challenges due to
the combinatorially large space of the problem. As such, the acceleration of
exploration through this landscape can have a substantial impact on the progress of
the medical field. Motivated by this, we propose MetaRLBO where we (1) train an
autoregressive generative model via Meta-Reinforcement Learning augmented with
surrogate reward functions and exploration bonus to navigate through the sequence
space efficiently. The Meta-RL policy is trained over a distribution of beliefs (i.e.,
proxy oracles) of the objective function, encouraging the policy to generate diverse
sequences. Due to the large-batch and low-round nature of the wet-lab evaluations
(true function evaluation), we (2) perform a more targeted evaluation through
Bayesian Optimization. Our in-silico experiments show that meta-learning over
such ensembles provides robustness against reward misspecification and achieves
competitive results compared to existing strong baselines.

1 Introduction

Designing biological sequences has been a long-standing challenge due to the large chemical space
with extremely sparse functionally interesting sequences [8]. The time and cost-intensive objective
function evaluations such as wet lab experiments required to assess these sequences, merits the
need for a principled way to tackle such problems in a black-box fashion. We propose Bayesian
Optimization (BO), which approximates the expensive objective function (i.e., true oracle) of the
optimization problem, with a cheap surrogate model and evaluates samples using an acquisition
function to explore (i.e., select uncertain but informative sequences) or exploit (i.e., select sequences
with high predicted value).

Although acquisition functions are relatively cheap to evaluate, naively searching over the space of
possible sample locations can quickly become intractable. In previous work, Swersky et al. [21]
proposed to train a policy such that it modifies a population of sequences to directly optimize the
acquisition function. Belanger et al. [4] propose to brute-force enumerate over the search space for
shorter sequences and to use regularized evolution [16] for designing longer sequences. Romero et al.
[17] propose to construct sequences with enhanced thermostability using crossover on an existing
dataset of sequences and selects sequences using GP-UCB [20].

In this work, we propose to treat the problem of biological sequence discovery as training a generator
that proposes promising candidate sequences and use Bayesian Optimization as a selection procedure.
Generative models give us the ability to jump to the regions of the landscape that were never searched
before. In this paper, we present a method called MetaRLBO where we frame the problem of training
a generator as a Meta-Reinforcement Learning problem and apply Bayesian Optimization for batch
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Figure 1: Schematic of the MetaRLBO Framework.

black-box function optimization. In each round, we design our tasks by constructing a distribution of
proxy oracles and train our generator via Meta-Reinforcement Learning. Then, we generate sequences
with this meta-learned generator and finally select the sequences to query the true oracle via Bayesian
Optimization. Our experiments show that MetaRLBO achieves competitive performance compared to
existing strong baselines. In addition, we analyse the uncertainty estimates given by various surrogate
models for batch sequence design.

2 Methodology

The optimization problem consists of generating a sequence that maximises the expected reward
s∗t = argmaxst∈Sf(st). The sequence design can be viewed as a Markov decision process (MDP)
where sT is a sequence of length T and of alphabet ΣT

t=1at, that maximises an experimentally
measured value (oracle) f : S → R. For example in the Anti-Microbial Peptide (AMP) design task,
f(s) is defined as the antimicrobial efficacy of the candidate sequence s, which can be computed
using wet lab experiments. In particular, we are interested in a specific case of black-box optimization:
one which requires few rounds of evaluations over large batches, typical of wet lab experiments over
biological assays (DNA, proteins, RNA, etc). This setting is one where in each round r we want to
minimize an objective function using the information from previously generated sequences. In each
round, our algorithm generates a set of candidate sequences Br =

⋃B
i=1 si where B is the size of the

batch. The sequences are then evaluated according to our oracle f and added to the queried data
D ← D

⋃
{(s, f(s))|s ∈ Br} and a new round is started. The objective is to maximise the score of

aggregated sequences maxs∈
⋃

i Bi
f(s).

2.1 Inner-Outer Loop Optimization

We approach this problem from a reinforcement learning perspective. In this framework, our generator
iteratively constructs new sequences by appending one element at a time to a string (initially empty)
until it chooses to stop. We view this procedure as a sequential decision making problem where the
action space is discrete and consists of all the possible symbols of a given alphabet (e.g., amino acids)
and the state space S =

⋃
t=1,...LAt is the set of all possible sequence prefixes where L is the length

of the sequence. In other words, at time step t, the state is st = a0, . . . at−1 s.t. ai ∈ A. Because the
state changes according to the action of the concatenation operation, the transition probability function
in this MDP is fully known and deterministic, ie: P (st+1|st, at) ≜ 1 (st+1 = concat(st, at)) In the
current instantiation of our algorithm, we provide our system with feedback on the generated string
only at the end of the sequence construction and not during.

The nature of our problem prevents us from querying the oracle (wet lab) directly to evaluate
the reward function. Hence, we devise a hierarchical approach in which a Bayesian optimization
procedure orchestrates the interaction with the oracle while using samples from the RL generator in
the inner loop. Figure 1 provides an overview of the interaction protocol between all components
of our system. In this inner loop, the generator is trained over an ensemble of estimated reward
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functions acting as a proxy to the expensive true oracle. We are therefore under a model-based
RL setting, but one where the transition dynamics are fully known and deterministic. Learning
an ensemble of reward functions offers many advantages: it provides uncertainty estimates readily
usable by the BO procedure and provides more robustness in the presence of error in the estimated
reward model. However, in order for this approach to be practical, we need to be able to learn good
policies sufficiently fast for each such proxy oracle (reward function). We address this issue using a
MAML-like meta-learning approach where we meta-learn initial parameters for the generator.

2.1.1 Inducing a Distribution over Proxy MDPs

We learn a distribution over proxy oracles Ω(f) by training on the queried dataset D =
⋃

i Bi. The
initial dataset B0 can either be obtained from previous experiments (e.g., related wet-lab experiments)
or sampled randomly according to a prior distribution. In order to induce a distribution over possible
MDPs, we sample different subsets of the current dataset D, fit a proxy-oracle model to predict the
score, and train an RL agent (generator) for each sub-sampled dataset of size p|D| where 0 < p ≤ 1.

2.1.2 Training the generator via Meta-RL

The particular flavor of meta-learning considered in this paper is based on the adaptation procedure
of MAML [9]. In each meta-training step, we sample a set of V proxy oracles f̂1, f̂2, . . . f̂V ∈ Ω(f).
Each proxy oracle specifies a different MDP (i.e. task) Mi for which the reward function is given by
f̂i. During the adaptation phase of our generator, we fine-tune πθ for K steps using a REINFORCE
gradient estimator from a learned θ0. In order to learn the initialisation, we backpropagate through
the K gradient steps.

θit+1 ← θit − α∇θL(θit;Mi) ,

θ0t+1 ← θ0t − γ
1

V

V∑
i=1

∇θL(θiK ;Mi)

While higher-order differentiation of the REINFORCE surrogate loss results in a biased meta-
gradient [10], we choose to ignore this technicality in favour of increased computational efficiency as
commonly done in practice with other algorithms.

2.1.3 Generating sequences

When generating sequences to evaluate, we sample a number of proxy oracles f̄1, f̄2, . . . , f̄Q ∈ Ω(f),
each reflecting a belief of the true oracle f . We then finetune each generator for some pre-defined
number of steps for each tasks, giving us a set of policies πθ(1) , πθ(2) , . . . πθ(Q) . At the end of
this procedure, we then query |P | sequences from each policy that we gather into a batch P =⋃

i=1,...,Q Pi. Since the reward function of each MDP is different, generated sequences from different
policies πθ(1) , πθ(2) , . . . πθ(Q) provide uncertainty about the generation process as a whole.

Promoting Diversity Within a Round In each round of interaction at the outer level (from BO
to wet lab), a batch of candidate sequences to be presented to the Bayesian Optimization must be
formed using the ensemble of generators. By virtue of using a different reward function in each MDP,
the corresponding learned generators tend to be different from each other, i.e. the learned optimal
policies need not be the same. Hence, the combination of subset sampling and meta-learning readily
provides a mechanism for generating more diverse candidates in each round. That is: it provides a
form of meta-exploration on top of the built-in exploration mechanism of softmax policies.

Promoting Diversity Across Rounds Similar to the existing literature on count-based methods
and density models for promoting exploration [5, 2], we augment the reward with an exploration
bonus. This method encourages the generation of diverse sequences relative to the ones queried in the
previous rounds. This augmented reward is defined as r = f(s)− λdensϵ(s) where densϵ(s) is the
weighted number of sequences with a distance less than a threshold ϵ from s. λ is a hyperparameter
that controls the the strength of exploration.

2.1.4 Selection via Bayesian Optimization

When selecting sequences, we evaluate the generated sequences P according to an acquisition
function. For the surrogate model, we can re-use the proxy models (f̄1, . . . f̄Q) sampled from the
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proxy oracle distribution Ω(f) that were used for training our policies. Aggregating the proxy models
together, we get a surrogate model comprising of an ensemble of neural networks without the need
for additional computation. Alternatively, we can train a new surrogate model given the queried
dataset

⋃
i Bi. However, in our experiments, we found that re-using the proxy models works well

in practice. For evaluation, we greedily select the sequences Bi ⊆ P that maximise the acquisition
function and query them using the etobjective function (i.e. true oracle) f .

3 Experiments

For the sake of conciseness, training details are included in the Appendix. We test our approach
on three kinds of sequence optimization problems: designing Anti-Microbial Peptide sequences
(AMPs), Ribonucleic Acid (RNA) sequences, and sequences that maximise a synthetic Alternating
Ising Model. In the AMP problem, the sequences are of variable lengths. In the Alternating Ising and
the RNA14 Task, the sequence length is fixed.

Antimicrobial Peptides (AMP) AMPs are small peptides with amino acids as their building blocks
and a length generally ranging from 8 to 75 (amino acids). This task consists of an alphabet of size
20 and a maximum length of 50, which gives rise to a search space of size O(2050). Following [2],
we train a random forest classifier to predict whether a sequence is antimicrobial towards a certain
pathogen and we use that as our ground truth (wet lab) simulator. In our experiments, we perform 12
rounds with a batch size of 250.

Alternating Ising Model We consider the synthetic problem of generating a string of alternating
characters [21]. The string with the highest score is one that only alternates between two characters.
We consider the problem setting with lengths of 20 with an alphabet of size 20. As such, the search
space of this problem is O(2020). In our experiments, we perform 16 rounds with a batch size of 500.

Ribonucleic Acid (RNA) We design RNA sequences with length 14 from the alphabet of size 4
nucleotides, this would give us a search space of O(414). Here the optimization problem can be
defined as finding a sequence that maximises the negative binding energy towards a hidden RNA
target of length 50. To simulate the ground truth oracle we use FLEXS package. [19, 14] In our
experiments, we perform 12 rounds with a batch size of 100.

3.1 Baselines

In our experiments, we compare against several baselines including exploration algorithms proposed
in FLEXS [19] and Bayesian Optimization methods proposed in [21]. Primarily, we consider: (1)
Random: A baseline that mutates a random previously measured sequence. (2) Genetic: A naive
genetic algorithm that uses a Wright-Fisher model and single point mutations and recombinations.
[19]. (3) CMA-ES: Covariance Matrix Adaptation Evolution Strategies [11, 19]. (4) DynaPPO: A
model-based RL algorithm that learns a reward function given by the mean predicted value of an
ensemble of various different models such as random forests, gaussian processes, and bayesian ridge
regression. [2, 19]. (5) Adalead: A model-guided evolutionary greedy algorithm [19].

3.2 Results

For a fair comparison, mutative methods are initialised with a random string, to ensure that no prior
knowledge is given to the method. Figure 2a shows results using MetaRLBO on the AMP, RNA, and
Alternating Ising Model problems. In Table 1, we compare our method with Bayesian Optimization
methods and evolutionary methods. We see that MetaRLBO outperforms several existing baselines.

Uncertainty Model Prior work considered using an ensemble of MLPs as the surrogate model for
Bayesian Optmization [4, 21] In Figure 2d, we show an uncertainty calibration plot comparing various
surrogate models trained on sequences selected in the first n rounds and evaluated on the sequences
selected in the n+1-th round. This measures how well a surrogate model is at estimating uncertainty
in a multi-round setting. Calibration in the regression setting [13] means that yt should fall in a c%
confidence interval c% of the time. This means that in Figure 2d, we would want surrogate models to
achieve as close to y = x as possible. To generate the data for the analysis, we run MetaRLBO on the
AMP task using UCB as our acquisition function and an ensemble of CNNs as our surrogate model.
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(a) AMP (b) RNA14 (c) Alternating Ising

(d) Uncertainty Calibration Plot (e) Box Plot of NLL (f) Ensemble of Policies

Figure 2: (a), (b), (c): Cumulative max scores given by the objective f . (d), (e), (f): Analysis Plots

Alternating Chain Length 20
Acq. Function UCB POST
Single Mutant 14.67 14.67
Regularized Evol 14.67 14.67
BO + Single Mutant 15.33 13.67
BO + Regularized Evol 16.67 15.00
BO + DES 16.67 16.33
MetaRLBO 18.00 17.00

Table 1: Alternating Chain Ising20 task. Previous
results obtained from [21]

Proxy Model Cumul. Max
CNN 18
MLP 15

Table 2: Ising20 Task using UCB. We compare
the performance of MetaRLBO when trained on
different proxy oracles.

In Figure 2d, we considered surrogate models such as an ensemble of feedforward neural networks
with three layers (32, 8, 4 units and p = 1.0) used in Belanger et al. [4] and Swersky et al. [21],
ensemble of convolutional neural networks (p = 1.0), ensemble of Bayesian Ridge Regressors
(p = 0.8), ensemble of K-Neighbors Regressors (p = 0.8), and Gaussian Processes. The results show
that an ensemble of CNNs is better calibrated than the other surrogate models. We also measure the
Negative Log-likelihood (see Figure 2e), another popular metric for evaluating predictive uncertainty
[7]. We see that the ensemble of MLP has higher variance.

We also evaluate the uncertainty models empirically in practice on the Alternating Ising Model task.
In this experiment, we run MetaRLBO from scratch using either MLP or CNN as the proxy model
Ω(f). In practice, we found CNNs to perform better (see Table 2). The result of our analysis suggests
that convolutional neural networks are better suited for uncertainty estimation in biological sequence
design than that of feedforward neural networks.

Ensemble of Policies. As an ablation, we compare MetaRLBO with training an ensemble of policies.
Instead of fine-tuning different Q policies from a set of meta-trained parameters, we train Q different
policies from scratch per round such that each policy optimises for a different proxy oracle. In
these experiments, we set Q = 8, generating 256 sequences from each policy. In our MetaRLBO
experiments, we additionally set V = 4 and K = 2. Empirically, we found that training a policy via
meta-reinforcement learning improved the performance (see Figure 2f).

Summary. In this work, we proposed MetaRLBO, a black-box optimization method that combines a
generator based on Meta-Reinforcement Learning and a selection procedure via Bayesian Optimiza-
tion. Our results show that MetaRLBO is competitive with other strong baselines. Furthermore, we
analysed the uncertainty estimates of surrogate models and find that an ensemble of CNNs is better
calibrated than an ensemble of MLPs as used in prior work.
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A Appendix: Glossary

B0 Initial dataset, either from available wet-lab experiemnts or sampled according to a prior distribution
Bi Batch of samples selected according to BO for every round i
θ0 Initialization of policy parameters
f True oracle (This is a model to approximate wet-lab results and f is trained on B0 dataset)
f̂ Sampled proxy oracle to specify reward
f̄ Sampled proxy oracle for sequence generation. f̄ chosen based on some BO acquisition function
K Number of steps for fine-tuning policy πθ

Q Number of proxy oracles sampled
P Number of sequences queried from each policy
A All possible alphabets to form given type of sequence
L Length of sequence to be generated

B Background

B.1 Meta-Reinforcement Learning

The specific flavor of Meta-Reinforcement Learning (Meta-RL) considered in this paper is one
where we have a distribution of Markov Decision Problems (MDPs) Ω(M) which we aim to control
optimally. Each such MDPMi ∈ Ω(M) is defined over discrete state and action space S and A
respectively. In the general case, each MDP can also have its own transition probability function
Pi : S ×A× S → R and reward function Ri : S ×A → R. In our context, the problem structure is
such that the transition function is known and shared across MDPs but the reward function varies.

We consider a performance criterion based on the expected discounted return over a finite horizon of
length H in searching for an optimal randomized policy π : S → Dist(A). We write the expected
return J under π:

J (π) = EPi,π

[
H−1∑
t=0

γtr(st, at, st+1)

]
,

γ is a discount factor.

Model Agnostic Meta-Learning (MAML) MAML [9] tackles a specific instance of the meta-
learning problem [6, 18] with a gradient-based algorithm inspired by bi-level optimization [3]. More
specifically, the MAML formulation considers the problem of learning initialisation parameters θ0
such that the policy adapts (improves) quickly within a few gradient updates to a new task. More
precisely, the meta-RL problem considered in MAML can be concisely formulated as:

min
θ0

EM′∼Ω(M)[L(θMK ;M′)]

s.t. θk+1 = θk − α∇θL(θMk ;M)

θM0 = θ {∀M ∈ Ω(M)}

L(θk;M) =
1

T

∑
t

Gt log πθk(at|st)

where K refers to the number of inner loop updates, T is the number of timesteps (i.e. the horizon),
θ refers to the meta-parameters, {(st, at, rt)}T−1

t=0 refers to a trajectory generated by the policy, and
Gt is the return from timestep t.

B.2 Bayesian Optimization

Bayesian Optimization (BO) aims to maximise a black-box (potentially non-differentiable) objective
function in a few evaluations. It does so by building a surrogate model (e.g., a GP [15] or ensemble)
of the true (oracle) objective function such that it can be queried at a lower cost. Given the surrogate
model, BO then proceeds to efficiently compute the posterior distribution over the function scores
and suggest promising candidates according to an acquisition function to be evaluated by the true
oracle. Acquisition functions not only take into account the score of a candidate as predicted by the
surrogate model but also its uncertainty. As a result, BO methods aim to find a suitable trade-off
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between exploration (gathering informative data) and exploitation (maximization of the black-box
score function).

While our algorithm is compatible with any acquisition function, we found that Upper Confidence
Bound (UCB) and Posterior Mean heuristics perform well in practice while being simple to implement.
The first strategy, UCB, is defined as AFUCB = µ(s) + βσ(s) where s is a sample, µ(s) and σ(s)
are the mean and standard deviation predicted by the surrogate model and β is a hyperparameter
controlling the exploration-exploitation trade-off and with larger values favouring sequences of higher
uncertainty. In contrast, the Posterior Mean approach selects only sequences with high predicted
scores. As a result, the method does not explicitly try to explore uncertain areas. Posterior Mean can
therefore be found as a subcase of UCB for the value of β = 0.

While Gaussian Processes have been the de facto choice in BO application, their poor scalability in
high-dimensions [23] and over large datasets rendered them incompatible with modern deep learning
tools. In this work, we use instead an ensemble of convolutional neural networks as the surrogate
model. In this case, µ(s) is given by the mean of the predictions from the ensemble and σ(s) is
similarly estimated using the standard deviation.

C Training Details

Policy Network We implement the policy as a feedforward neural network that takes as input the
flattened one-hot encoding of the generated string, i.e. a vector of dimension RL×A where L is the
length of the sequence and A is the size of the alphabet. The network output is the logits for the
distribution over the next character to be generated. We also use entropy bonus to avoid premature
convergence [1]. We apply positional encoding [22] to the one-hot representation of the input string.

Surrogate Model In our experiments, we use an ensemble of CNNs for our proxy models. For each
ensemble member, the model is trained for 10 epochs using the ADAM optimizer [12] with a batch
size of 50 and mean squared error loss. In practice, we found setting p = 1.0 sufficient for training
neural networks since diversity can be induced by the different neural network initialisation. However,
setting p < 1.0 is necessary for evaluating different proxy models (see Section 3.2)

Training During meta-training, we sample V = 4 proxy models per meta-updates. When generating
sequences, we sample Q = 32 proxy oracles and generate |P | = 64 sequences from each of π(i)

θ . In
our experiments, we assume no prior knowledge is given, generating B0 via a random policy.
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