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Abstract

Protein language models (PLMs) have recently been proposed to advance drug-
target interaction (DTI) prediction, and have shown state-of-the-art performance
on several standard benchmarks. However, a remaining challenge for all DTI
prediction models (including PLM-based ones) is distinguishing true drugs from
highly-similar decoys. Leveraging techniques from self-supervised contrastive
learning, we introduce a second-generation PLM-based DTI model trained on
triplets of proteins, drugs, and decoys (small drug-like molecules that do not bind
to the protein). We show that our approach, ConPLex, improves specificity while
maintaining high prediction accuracy and generalizability to new drug classes.
ConPLex maps proteins and drugs to a shared latent space which can be interpreted
to identify mutually-compatible classes of proteins and drugs. Data and code are
available at https://github.com/samsledje/ConPLex.

1 Introduction
Accurate and rapid prediction of drug-target interactions (DTIs) remains a major open problem in
drug discovery. A DTI prediction method needs to address the twin goals of generalizability and
specificity. The ideal predictive approach would generalize broadly, i.e., make accurate predictions
on hitherto unseen classes of drugs. It would also have fine-grained specificity, i.e., be able to discern
the binding impact of minor changes to a protein or drug molecule. Even in early DTI prediction
methods, it was observed that these goals are difficult to achieve simultaneously. In 2006, Huang et
al. introduced the Directory of Useful Decoys (DUD) [9] (later updated to DUD-E, “DUD Enhanced”
[16]) to enable quantification of prediction specificity. For a set of DTIs, DUD-E offers decoys: small
molecules that share physical and chemical similarities with the true-positive drug but do not actually
bind with the target. Huang et al.’s work presaged the development of similar ideas in adversarial
machine learning. In particular, their formulation of the DTI prediction task is similar to generative
adversarial networks (GANs) [7]: the role of a generator is played by the DUD-E database, while the
DTI predictor acts as a discriminator.

In this paper, we seek to substantially improve the specificity of DTI prediction while retaining high
accuracy and generalizability. We approach the DTI prediction task from the perspective of protein
language models (PLMs). Trained over hundreds of millions of protein sequences, PLMs apply
the distributional hypothesis [2, 3, 18, 4] and learn a rich implicit featurization of proteins that has
proven useful in a variety of tasks [12, 19, 21]. Sledzieski et al. [20], and later Goldman et al. [6]
independently, have demonstrated the power of PLMs for DTI prediction. The use of pre-trained
PLMs unlocks the full richness and diversity of data across the protein universe, whereas models
trained solely on DTI data can leverage only the very limited percentage of protein space that has
been tested experimentally for interactions.

Here, we present ConPLex, a sequence-based DTI prediction approach that builds on previous
PLM-based methods. The key conceptual advance of this paper is the adaptation of mechanisms for
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self-supervised contrastive learning to enable discrimination of drugs from decoys. Anchored by the
lexicographic protein representation from a pre-trained PLM, we show that this contrastive approach
enables ConPLex to retain high predictive accuracy.

The triplet loss function, commonly used in contrastive self-supervised learning [1], compares three
entities of the same type: an anchor, a positive example (sometimes generated by modifying the
anchor itself), and a negative example. However, it is not immediately clear how this loss function
should be employed in the DTI setting, as the latter corresponds to a supervised learning task and
involves entities of two different types (i.e., protein and small molecule). Our key insight is that
using a formulation where these entities are mapped to a shared latent space allows the triplet loss
to be applied (with the protein, drug and a decoy as the triplet). ConPLex introduces a co-training
framework that utilizes a ground-truth DTI dataset alongside the DUD-E database and modifies the
standard triplet loss to incorporate a margin annealing scheme.

We show that the ConPLex approach substantially improves the ability to distinguish test-set drugs
from decoys while retaining high DTI prediction accuracy. Furthermore, it also makes the shared
latent space of drugs and proteins more robust and interpretable, and we show that the learned
representations of drugs cluster better and are closer to the target after contrastive training.

Figure 1: Overview of contrastive learning in ConPLex. We augment the PLM-based DTI
model introduced by Sledzieski et al. [20] with contrastive learning to achieve highly specific decoy
detection. Given a triplet of a protein target, a small molecule that binds to it (“drug”), and a small
molecule that doesn’t (“decoy”), we co-embed all of them into a shared latent space and apply a
contrastive penalty if the decoy is closer (or further but within some margin) to the target than the
drug (bottom). If the decoy is sufficiently far away from the target (top), no additional penalty is
applied. Concurrently, the model is co-trained on a separate binary classification task, using a DTI
data set that contains a greater diversity of unique proteins but lacks decoys.

2 Methods
Data We trained and evaluated ConPLex on examples from the Directory of Useful Decoys:
Enhanced (DUD-E) [16]. We simultaneously co-trained the model also on the DTIs from the
BIOSNAP [22] benchmark. Statistics for each data set, including number of unique proteins and
drugs, and number of training/validation/test edges are provided in Table A.1.

DUD-E consists of 102 proteins and 22,886 known drugs (average 224 molecules per target). For
each drug, 50 decoys are available. We focused on the 57 targets (and their associated drugs/decoys)
where the enzyme category was specified; these spanned GPCRs, kinases, nuclear proteins, and
proteases. We stratified train-test splits by categories, so that there are targets of each category in
both the training and test sets. We provide the full list of targets in Table A.2.
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Our inclusion of the BIOSNAP dataset was motivated by the relatively few ground-truth DTIs
contained in DUD-E, which are insufficient to learn drug-target binding. However, the BIOSNAP
benchmark consists of only positive DTIs. Following Huang et al. [8], we made the assumption that a
random pair is unlikely to be positively interacting and created negative DTIs by randomly sampling
an equal number of protein-drug pairs. We train on a random 70% split, leaving 10% for validation,
and the remaining 20% for testing.

Sledzieski et al.’s PLM-Based DTI Model ConPLex is based on the work of Sledzieski et al.
[20], which exploits a highly-informative PLM representation of proteins to predict DTIs. We
briefly describe the base model (PLM-DTI) here, which we then augment with the contrastive
training. Sledzieski et al. featurize the protein target using a pre-trained ProtBert model [4]. Given
a protein sequence, ProtBert generates an embedding Tfull ∈ Rn×dt (d = 1024) for a protein of
length n, which is then mean-pooled along the length of the protein, resulting in a vector T ∈ Rdt .
Simultaneously, they generate a feature vector for the drug using its Morgan fingerprint [15], a fixed-
length embedding M ∈ Rdm (dm = 2048) of the drug’s SMILES string produced by considering
the local neighborhood around atoms in the molecular graph.

Given the embeddings of target T ∈ Rdt and small molecule M ∈ Rdm , Sledzieski et al. transform
them into T ∗ = FC(T ),M∗ = FC(T ) ∈ Rd, where FC(·) is a single fully-connected layer with a
ReLU activation. The latent space embeddings T ∗,M∗ are then used to compute the probability of a
drug-target interaction p̂(T ∗,M∗) as the cosine similarity between the embedding vectors, followed
by a sigmoid activation.

Contrastive Loss We build upon Sledzieski et al.’s model architecture, training ConPLex in
alternating epochs, one focused on the BIOSNAP dataset and the other on the DUD-E decoy dataset.
On the BIOSNAP data, model weights are updated using the binary cross-entropy loss (LBCE). In
alternate epochs, the model is supervised on decoys, with model weights updated using an adaptation
of the triplet distance loss. The conventional use of triplet loss in contrastive loss considers three
training points of the same type, the anchor, positive, and negative, and aims to minimize the
distance between the anchor and positive examples while maximizing the distance between the anchor
and the negative examples.

In the DTI setting, the natural choice for a triplet is the protein target as the anchor, the true drug as
the positive and decoy as the negative example, respectively. We derive a training set of triplets in
the following manner: for each known interacting drug-target pair (T,M+), we randomly sample
k = 50 non-interacting pairs (T,M−) and generate the triplets (T,M+,M−), where M− is drawn
from the set of all decoys against T . We map these to latent space embeddings as described above.
Since all the entities are now comparable to each other, we can compute the triplet margin-distance
loss (LTRM ).

LTRM (a, p, n) = max(D(a, p)−D(a, n) +m, 0) where D(u, v) = 1− p̂(u, v) (1)

Margin Annealing The margin m sets the maximum required delta between distances, above
which the loss is zero. Initially, a large margin requires the decoy to be much further from the
target than the drug to avoid a penalty, resulting in larger weight updates. As training progresses,
lower margins relax this constraint, requiring only that the drug be closer than the decoy as m → 0.
Here, the margin is initialized at Mmax = 0.25 and decreased over Emax = 50 contrastive epochs
according to a tanh decay schedule. At epoch i, the margin is set to

m(i) = Mmax(1− tanh(
2i

Emax
)) (2)

Implementation Model weights were initialized using the Xavier method from a normal distribution
[5] and optimized with the AdamW [14] optimizer for 50 BCE epochs and 50 contrastive epochs,
interleaved. For BIOSNAP (DUD-E) training, the learning rate was initially set to 10−4 (10−5) and
adjusted according to a cosine annealing schedule with warm restarts [13] every 10 epochs. We used
a latent dimension d = 1024 (results were robust to variations in latent dimension size) and a batch
size of 32. The model was implemented in PyTorch version 1.11 on a single NVIDIA A100 GPU;
after data loading, the full training run completed in ∼20-25 mins.

3



Table 1: ConPLex achieves state-of-the-art performance on decoy detection and DTI prediction.
We report the AUPR and AUROC for each method on DUD-E, a decoy determination benchmark, and
on BIOSNAP, a general DTI benchmark. ConPLex, which was trained on both BIOSNAP and DUD-
E, outperforms two baseline models (Logistic Regression, MLP) that were trained specifically to
perform decoy discrimination. We show that co-training on decoys does not hurt general performance,
as ConPLex matches PLM-DTI (Sledzieski et al. [20]) trained only on BIOSNAP.

Model Trained on DUD-E BIOSNAP
DUD-E BIOSNAP AUPR AUROC AUPR AUROC

Logistic Regression ✓ ✗ 0.257 0.680 0.495 0.480
MLP ✓ ✗ 0.306 0.661 0.501 0.503

PLM-DTI (Sledzieski et al.) ✗ ✓ 0.076 0.672 0.900 0.877
ConPLex (Our method) ✓ ✓ 0.453 0.886 0.900 0.880

3 Results
Decoy Discrimination We demonstrate that ConPLex achieves extremely high performance on the
decoy discrimination task, out-performing two baseline models trained solely on binary drug-target or
decoy-target pairs, a logistic regression (LR) and multi-layer perceptron (MLP) [17]. The MLP was
initialized with a single hidden layer with 1024 nodes, and thus has the same number of parameters as
ConPLex (3,147,776). We report the area under precision-recall curve (AUPR) and receiver operating
characterstic curve (AUROC) in Table 1. The baseline models have AUPRs of 0.257 (LR) and 0.306
(MLP), while ConPLex has an AUPR of 0.453. We also report the performance of Sledzieski et al.’s
PLM-based DTI model trained only on BIOSNAP (PLM-DTI). While this model performs well on
general DTI prediction, it is unable to discriminate between the highly-similar decoy drugs and only
reaches an AUPR of 0.076—demonstrating the need for contrastive co-training.

General DTI Performance While contrastive training has an extremely beneficial impact on decoy
discrimination, it is desirable that this additional training does not decrease overall DTI performance.
On the BIOSNAP test set, ConPLex has an equivalent AUPR to the non-contrastive PLM-DTI (Table
1). Unsurprisingly, the baseline models trained only on decoy discrimination are unable to predict
DTIs and show essentially random performance on the BIOSNAP data.

Learning meaningful representations of ligand binding The co-embedding approach taken by
PLM-DTI and ConPLex also enables interpretability— we can visualize the shared latent space, and
measure how the representations of proteins and drugs change as a result of the contrastive training.
For each model and each target in the DUD-E test set, we plotted the target alongside all drugs and
decoys using the embeddings from the base and contrastive-tuned model. Figure 2a,b shows one such
example, the tyrosine kinase VGFR2. We also show the distribution of distances in the latent space
between the target embedding and the embeddings of the drugs and decoys for each model (Figure
2c, d) (p-values from one-sided t-test).

In Figure 3, we show a quantitative analysis of all test-set targets. We compute the effect size (Cohen’s
d) of the difference between predicted drug and decoy scores. We plot these effect sizes for both
PLM-DTI and ConPLex. An increase in the effect size indicates that the co-embedding distances
learned by the model better represent binding specificity. For each class of targets, we also report
the median p-value (one-sided t-test) between drug and decoy scores predicted by ConPLex. For all
targets, contrastive training produced a stronger latent-space separation between drugs and decoys.

4 Discussion
High performing DTI prediction methods should be able to generalize broadly to unseen types of
drugs and targets, while also discriminating between highly similar molecules with different binding
properties. Previous work demonstrated the utility of PLMs to improve the generalizability of DTI
prediction methods[6, 20]; we now add a contrastive learning approach which improves specificity.
The contrastive approach taken by ConPLex is directly enabled by the architecture of the base
PLM-enabled lexicographic model— to compute the triplet distance loss, the protein and drugs must
be co-embedded, and the distance between them must be meaningful and simply computed. Such
an approach would not be feasible using a model which concatenates features up front, nor for a
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Figure 2: Improved latent space representation using contrastive learning. We compare the
learned co-embedding of the baseline PLM-DTI (Sledzieski et al. [20]) with the shared latent space
learned by ConPLex. (a) In the original space, drugs (blue) of VGFR2 are relatively scattered and
are far from the target embedding (green). (b) In the ConPLex space, drugs cluster around the
target embedding. (c) Using PLM-DTI, it is difficult to distinguish drugs and decoys based on their
distance to VGFR2 (p = 0.999, one-sided t-test). (d) ConPLex clearly differentiates drugs and decoys
(p = 0.000).

Figure 3: Contrastive training improves separation between drugs and decoys. Difference in
predicted drug vs. decoy score is measured per target using effect size (Cohen’s d). For each class,
we additionally report the median p-value (one-sided t-test) for ConPLex drug vs. decoy scores. The
y = x line corresponds to no change in effect as a result of contrastive training. The change in effect
is strongest for kinases and nuclear proteins, while contrastive training has a weaker effect for GPCRs.
Targets where effect size improves by at least 10x are labeled.

model which has significant computation (say, additional linear layers) defining the probability of
interaction after the co-embedding. Thus the shared lexicographic space in which we embed the
proteins, targets, and decoys is key. A limitation of ConPLex, and of previous approaches, is that it
only provides a binary output and not an affinity prediction or the structural mechanism of interaction.
ConPLex approaches the DTI decoy problem from the perspective of adversarial machine learning,
where the model must act as a discriminator for adversarial examples from the decoy database. Future
work could explore adapting molecular generation methods such as JT-VAE or HierG2G [10, 11]
to directly act as a generator for decoys. Notably, high-specificity DTI prediction is also valuable
beyond decoy detection— the greater specificity of inference can help improve personalized medicine
or the modeling of drug effects against rare variants from under-represented populations.
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A Appendix

A.1 Data Details

Table A.1: Data set summary. ConPLex is trained in alternating epochs on DTI data from BIOSNAP
[22] and on decoy data from DUD-E [16]. Protein targets in DUD-E are separated by class into pro-
teases, GPCRs, kinases, and nuclear proteins. We report here the number of unique drugs and proteins
in each data set, as well as the number of training, validation, and testing pairs (positive/negative)
available to the model.

Data Set Drugs Proteins # Training # Validation # Test

DUD-E 8996 / 406208 — 11430 / 521132
Protease 286089 15
GPCR 99671 5
Kinase 315399 26
Nuclear 151133 11

BIOSNAP 4510 2181 9670 / 9568 1396 / 1352 2770 / 2727
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Table A.2: DUD-E target classes and splits. Targets were randomly split within each class, so that
there were examples of each class in the training and test set. There are a total of 57 targets, 26 in
training and 31 in testing.

AA2AR Gpcr Train
ABL1 Kinase Train
AKT1 Kinase Train
CDK2 Kinase Train
EGFR Kinase Train
FAK1 Kinase Train
FGFR1 Kinase Train
IGF1R Kinase Train
JAK2 Kinase Train
KIT Kinase Train
MAPK2 Kinase Train
MK01 Kinase Train
PLK1 Kinase Train
TGFR1 Kinase Train
ANDR Nuclear Train
ESR2 Nuclear Train
MCR Nuclear Train
PPARD Nuclear Train
THB Nuclear Train
ACE Protease Train
BACE1 Protease Train
DPP4 Protease Train
FA7 Protease Train
HIVPR Protease Train
MMP13 Protease Train
TRYB1 Protease Train

ADRB1 Gpcr Test
ADRB2 Gpcr Test
CXCR4 Gpcr Test
DRD3 Gpcr Test
AKT2 Kinase Test
BRAF Kinase Test
CSF1R Kinase Test
KPCB Kinase Test
LCK Kinase Test
MET Kinase Test
MK10 Kinase Test
MK14 Kinase Test
MP2K1 Kinase Test
ROCK1 Kinase Test
SRC Kinase Test
VGFR2 Kinase Test
WEE1 Kinase Test
ESR1 Nuclear Test
GCR Nuclear Test
PPARA Nuclear Test
PPARG Nuclear Test
PRGR Nuclear Test
RXRA Nuclear Test
ADA17 Protease Test
CASP3 Protease Test
FA10 Protease Test
LKHA4 Protease Test
RENI Protease Test
THRB Protease Test
TRY1 Protease Test
UROK Protease Test
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