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Abstract

Language Transformers (LaTs) have achieved state-of-the-art performance in a
range of challenging protein modeling tasks including structure prediction, design,
mutation effect prediction, and others. The lion’s share of these improvements
derive from exponential increases in the size and depth of these neural networks,
which now routinely exceed billions of trainable parameters, rather than funda-
mental architectural innovations. This explosive growth in model size poses an
obstacle to integration into design-build-test cycles, wherein models are iteratively
evaluated, retrained, and improved throughout data collection. As a result, large
LaTs do not meet the need for lightweight, rapid-to-train models that excel at
problems with tight data-model feedback loops. Here, we present a small, 10
million-parameter BERT model with linearly scaling attention that can be trained
from scratch on four Nvidia V100 GPUs in under a week and fine-tuned with full
back-propagation in hours to days. We demonstrate that this model excels at two
challenging active-learning problems, recombinant protein expression prediction
and codon optimization, that require interfacing with experiments. Our approach
highlights the size-cost tradeoff inherent to LaTs and demonstrates the utility of
small, custom-designed models in practical settings.

1 Introduction

The interface of bioinformatics and deep learning has been shaped by public access to massive genetic
databases, such as UniProt [1] and MGnify [2], containing millions to billions of naturally occurring
amino acid sequences. In recent years, this resource has facilitated the development of Transformer
models [3] adapted from the field of natural language processing that excel at a range of challenging
scientific tasks, ranging from point mutation effect prediction [4] to structure prediction and design
[5]. Recent developments have focused on increasing their size and depth [6], rather than revisions
to the architecture responsible for their groundbreaking performance. Modern models routinely
exceed one billion trainable parameters and demonstrate both more effective generalization as well as
accurate zero-shot performance in adjacent objectives such as function prediction. Improvements in
specialized computational resources such as TPUs are certain to further propel massive increases
in the size of LaTs. However, such developments put these computational innovations further out
of reach of practitioners with limited time, computational resources, or experimental sequence data
available for training.

In this manuscript, we demonstrate that small models, trained in under a week using four GPUs and
fine-tuned in a matter of days, can provide state-of-the art predictions in a range of specialized tasks.
Since large LaTs are designed to be trained on hundreds of millions of wild-type sequences without
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issue, they are ill-equipped to derive conclusions from smaller, manually curated databases available
for training in such settings. Two example problems include recombinant protein expression prediction
(in Escherichia coli), which determines whether an amino acid sequence will be synthesized and
folded, in a cellular setting, in sufficient quantities for purification and downstream assays, and codon
optimization, which determines a DNA sequence adherent to constraints, usually to maximize protein
expression. LaTs are largely inappropriate for such problems for two reasons. First, the computational
complexity and size of the models needlessly raises the cost of fine-tuning. In natural language
processing tasks, efforts to address this include distilling models to a minimal set of parameters[7].
Second, reliance on self-attention, which scales quadratically with respect to sequence length, further
slows training and inference times. There have been some efforts toward linearizing self-attention in
the setting of a protein language model, such as ProteinBERT [8], thus indicating that pursuing these
strategies in tandem has the potential to outperform models with up to ten times more parameters.

An ideal model would balance the benefits and tradeoffs of model size when determining which
architecture should serve as a foundation for further task-specific fine-tuning. Here, we demonstrate
that a custom-designed derivative of ProteinBERT, which at 10 million parameters is orders of
magnitude smaller than modern LaTs, can achieve state-of-the-art prediction in two distinct tasks,
recombinant protein expression prediction and codon optimization, with only hours to days of
training. Instrumental to this rapid training schedule was the refactoring of ProteinBERT to PyTorch
[9] and PyTorch Lightning [10], as well as improved accessibility by simplifying its training scheme.
Accurate predictions of recombinant protein expression were achieved by topping off the model
with two fully-connected layers, whereas codon optimization prediction was enabled by passing the
amino acid embeddings obtained from the fine-tuned Transformer model through a separate decoder
trained on bacterial genomes. Our results show that full back-propagation through the entire model,
made possible by the model’s small size, measurably improves accuracy during expression prediction.
However, these advantages come at the cost of poorer zero-shot prediction, exemplified by an inability
to optimize codons with specific G/C content. Overall, our results demonstrate how the nimbleness
of small LaTs make them amenable to rapid model design and testing, thereby providing greater
practical value in diverse and challenging tasks.

2 Methods

2.1 Foundational BERT

We re-implemented the network described in [8]. It follows a standard BERT architecture [11] but
with two key differences. First, the network is tasked with recovering a corrupted protein sequence
and simultaneously predicting function (GO annotation). Second, the network shares information
between these two parallel paths via global attention wherein sequence embeddings comprise query
and value vectors, but functional embeddings comprise the key vector. Functional embeddings are
“global” – there is a single fixed-length vector per protein. This reduces the dimensionality of the
query-key dot product by one and results in a decrease in parameter count and speed up during
training and inference time.

The original model was released in TensorFlow and a public implementation was soon published in
PyTorch [12]. We found the PyTorch implementation more amenable to repeated design-build-test
cycles and further improved on it by wrapping it in PyTorch Lightning, introducing sinusoidal
positional encodings, and fixing a few small bugs. We elected to train on UniRef50 rather than
UniRef90 to decrease the number of functional GO groups from 8943 to 2449 and increase sequence
diversity [13]. It has been previously shown that differences between models trained on UniRef100,
UniRef90, and UniRef50 are minimal [4, 14]. We further changed the training scheme to not be
length-dependent, as reported in the original paper. However, to ensure efficient batching, we
elected to train on all proteins of length <= 1022 in the dataset (97.4%) with an 85%/10%/5%
train/validation/test split. Finally, we trained for 3× the steps reported in the original paper to ensure
convergence.

2.2 Recombinant expression prediction

We followed the standard approach of fine-tuning on embeddings extracted from the foundational
model. We anticipated expression to be a global property and predicted it as a binary classification
problem from the global embedding, rather than the sequence embeddings. We tested several
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architectures for this purpose and found two fully-connected (FC) layers to be sufficient while
preventing overfitting; we call this the expression prediction head.

We focused on predicting recombinant expression in E. coli as there are several rich datasets on
this task, although the network architecture could be easily adapted to predict expression in any
organism. The data were sourced from the Protein Structure Initiative and the Seattle Structural
Genomics Consortium, a total of 31,178 records which all comprised the train set. For the validation
and held-out test set we manually curated a further 2,273 and 1,630 “challenging” human sequences
from in-house experiments. To prevent overfitting, we trained with 50% dropout in the two FC layers
and stopped training early if the accuracy difference between the validation and training datasets
diverged by > 2%. For the in-house protein BERT model, we permitted back-propagation through
the entire network after a warmup period. Finally, to provide uncertainty estimation we ensembled
several trained models.

2.3 Codon optimization

We treated codon optimization as an amino acid to codon translation problem, extracting sequence em-
beddings from the foundational model and learning codons from these embeddings via a Transformer
decoder stack. We minimized categorical cross-entropy loss of the codons and considered additional
constrains for downstream engineering such as a target GC content and minimal self-complementarity.
Unlike previously reported deep learning codon optimization methods [15], this approach is not
autoregressive and does not utilize the known preceding codons at training and inference time.

The initial aim was to optimize expression in E. coli. However, the E. coli genome only possesses
4,096 expressing genes, so we considered the set of all expressed genes of the Escherichia genus,
derived from the NCBI RefSeq database, bringing the number of coding genes in our dataset to
331,854. We trained with a random 85%/10%/5% train/validation/test split. Unlike expression
prediction, we did not permit back-propagation through the foundational network.

A further aim of codon optimization is to enable downstream experiments, e.g. mutational scans,
that require precise manipulation of the nucleotide sequence via short, specific oligonucleotides
(primers) and polymerase chain reaction (PCR). Typical requirements are that the optimized gene
contains unique stretches of oligonucleotides and consistent G/C content (a proxy for the temperature
at which a targeting primer can anneal). To this end, we introduced differentiable constraints with
custom weights to the loss function and converted the codon log-probability distributions to one-hot
nucleotides by the Gumbel-Softmax trick [16].

Self-complementarity loss was implemented as an inner product over the unfolded length dimension
and A/T/G/C channels after unfolding the one-hot encoded DNA tensor1, in Einstein notation:
XileXjle = Tij , where X is the unfolded tensor, i and j are the unfolded dimensions of window size
(7 or 8), l is the length dimension of and e is the one-hot encoded dimension.

G/C loss was defined as the 1-D convolution over the one-hot encoded nucleotide tensor, with a
kernel of user-defined length (15 nucleotides here) with 0 in the A and T channels and 1 in the G and
C channels.

As a control, we implemented a genetic algorithm optimizing the same parameters. The approach
generated an initial population of 100 genes by sampling the E. coli codon table [17]. Over 50
generations, this population was expanded by 100 new members derived from random crossover of
the ten lowest-scoring (best) genes and two lucky genes from the rest, with a mutation rate of 5%.
Due to memory limitations on the GPU, only the 100 lowest-scoring members were retained per
generation.

3 Results

3.1 Recombinant expression prediction

We first replicated the results of [8], observing that the unsupervised foundational model minimizes
categorical cross-entropy loss for protein sequences and begins to converge after ∼20 epochs of
UniRef50 or ∼1 billion sequences (not shown). We then added the recombinant expression prediction

1https://pytorch.org/docs/stable/generated/torch.Tensor.unfold.html
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head, testing whether the global embeddings could be used as a basis for predicting expression and
if there was any advantage to propagating through the entire network. The results are summarized
in Figure 1. Fine-tuning just the expression head slightly improves accuracy and precision over
the baseline (a naïve majority-label predictor). With full back-propagation, the results are further
improved by ∼6% in both metrics. As a gold standard, we repeated the same experiment with
ESM-1b. We found that using ESM-1b as a foundational model provided similar accuracy and
precision on the training set but tended to overfit as the embedding vector was 10x larger and the
model had 65x parameters. Although this could be alleviated by better structuring the expression
prediction layers and hyper-parameter tuning, it would have come at 50x the computational cost of
tuning the linear BERT (Table 1).
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Figure 1: Accuracy and precision of predicting recombinant protein expression on the train-
ing/validation datasets for either the linear BERT or ESM-1b as the foundational model with the same
two fully connected layers on top. Values are reported for just fine-tuning (FT, only the top layers are
trained) and for fine-tuning and back-propagating (BP), where the top layers are fine-tuned for five
warm-up epochs and then the full foundational model is back-propagated through for an additional
epoch.

Table 1: Comparison of the average computational cost for embedding a single sequence with linear
BERT and the much larger ESM-1b model (on the same hardware and back-propagating through an
expression prediction head with two fully connected layers).

Runtime (ms)

Model Parameters (M) Training Inference

ProteinBERT 10 2 0.8
ESM-1b 650 100 40

3.2 Codon optimization

Next, we tested whether the sequence embeddings could be used for codon optimization via a
Transformer decoder architecture. We show overall decoding (amino acid to codon) accuracy in
Figure 2. Despite training without any explicit restrictions on amino acid to codon linkage, almost no
(< 1e−7) amino acids are mistranslated (not shown). Additionally, we compare the decoder accuracy
to previously published methods. N-grams are look-up tables that report the most frequent codon
based on the single amino acid, single amino acid plus one neighbor either side, and single amino
acid plus two neighbors either side. The 5-gram model has close to 3 million parameters and can
effectively memorize the E. coli coding genome (∼1 million amino acids). Finally, the state-of-the-art
deep learning performance is captured by the bi-direction long short-term memory (LSTM) model,
which additionally considers preceding codons [15]. Encouragingly, the decoder outperforms the
bi-LSTM model without using codon information as input.

Finally, we assessed the capacity for the decoder head to learn engineering constraints such as G/C
content and self-complementarity by training with two additional loss terms. At inference time, we
sample a single sequence from the learned distribution. We find that the decoder struggles to optimize
this new loss as the function derivatives are not smooth. This is made clear by comparison to a
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genetic algorithm with the same objective function (Figure 2). Interestingly, the CPU implementation
consistently finds lower-scoring variants than the GPU limitation. We speculate that this is due to the
memory limits of the GPU, which could only retain a single generation, while the CPU can track all
generations throughout evolution and sample more diversity. As expected, the deep learning (DL)
method is orders of magnitude faster than the genetic algorithm, which is faster on the GPU than the
CPU (Figure 2).
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Figure 2: Summary of codon decoder head performance. (Left) Comparison of the amino acid
to codon translation accuracy with N-gram methods and the SotA BiLSTM. (Center) Optimized
score distributions for a test set of human protein targets. Score is comprised of negative log
frequency codon usage plus quadratic penalty for distance from ideal GC content fraction and a
self-complementarity penalty. (Right) Time required to produce a single “optimized” sequence with
each method.

4 Discussion

Recent work on LaT models in protein science has largely focused on the development and application
of models with increasingly large architectures. While expanded LaT model scale can improve
performance on specific tasks, the accompanying large compute and memory requirements are
non-ideal for data-limited tasks and tasks with rapid design-build-test cycles that require frequent
re-training or fine-tuning. In this work, we present a complementary approach by developing an
order-of-magnitude smaller LaT model with linear attention to achieve rapid and efficient training
and fine-tuning for diverse downstream tasks.

Our model achieves 50x speed up in training and inferencing over the popular, larger ESM-1b
LaT model. We leverage this increased training efficiency to fine-tune the model for recombinant
protein expression prediction and codon optimization, achieving state-of-the-art performance with
significantly reduced computation time. The smaller LaT model is less prone to overfit on a data-
limited dataset for protein expression, highlighting its utility for predictive modeling of experimental
data which is often limited by cost of collection. The lightweight architecture of the model allows for
flexibility in iterative design, build, and test of custom models for specific engineering tasks such as
including GC-content and self-complementarity metrics in codon optimization. We see significant
future utility in continual re-training efforts for updating with evolving experimental data collection,
and coupling with iterative active learning frameworks for further efficient predictive model training.
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