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Abstract

Deep Learning models for protein structure prediction, such as AlphaFold2, lever-
age Transformer architectures and their attention mechanism to capture structural
and functional properties of amino acid sequences. Despite the high accuracy
of predictions, biologically insignificant perturbations of the input sequences, or
even single point mutations, can lead to substantially different 3d structures. On
the other hand, protein language models are often insensitive to biologically rele-
vant mutations that induce misfolding or dysfunction (e.g. missense mutations).
Precisely, predictions of the 3d coordinates do not reveal the structure-disruptive
effect of these mutations. Therefore, there is an evident inconsistency between the
biological importance of mutations and the resulting change in structural prediction.
Inspired by this problem, we introduce the concept of adversarial perturbation of
protein sequences in continuous embedding spaces of protein language models.
Our method relies on attention scores to detect the most vulnerable amino acid
positions in the input sequences. Adversarial mutations are biologically diverse
from their references and are able to significantly alter the resulting 3d structures.

1 Introduction

Understanding how protein sequences fold in a 3d structure has substantial implications for human
health, especially in drug design and in the development of disease therapies. SOTA models for
structure prediction (e.g. AlphaFold2 [8]) and Transformer based protein Language Models (LMs)
[21, 19, 5] are able to recover biological properties of proteins by processing the amino acids in a
sequence as words in a sentence. Despite the remarkable capabilities of protein language models,
they are often unable to predict misfolding caused by single-point mutations [2]. Moreover, it has
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been observed that biologically small perturbations in amino acid sequences manage to induce
radical changes in the 3d structures [7]. This limitation is presumably due to the scarcity of structure
disruptive mutations among the available PDBs [10], which makes protein language models unable
to catch all the biological features causing structural variations. We introduce a set of mutations,
which we refer to as adversarial mutations, whose goal is to: (1) alter a small subset of residues
in the original sequences; (2) produce perturbations that are biologically distant from the native
sequences. Specifically, we use BLOSUM distance (Section 2) as a metric of biological similarity;
(3) induce misfolding with respect to wild-type reference structures. Such mutations could then be
used to augment the available training datasets and to make structure prediction LMs more sensitive
to disruptive mutations.

2 Methodology

We search for biologically plausible perturbations of a few amino acids in the original sequences
that are maximally different in the 3d structures. It is natural to interpret this reasoning through
the lens of adversarial attacks [6], where the goal is to craft small perturbations of the inputs while
inducing the most significant change in predictions. A similar approach is presented in [7], where
the authors already propose a notion of “adversarial mutation” on amino acid sequences and use
the perturbations to assess the reliability of structure prediction on the RoseTTAFold [1] model.
Specifically, they define a robustness measure for structure prediction based on the computation of the
inverse RMSD between original and perturbed structures and use it to produce adversarial sequences.
The fundamental novelty in our approach is that the adversarial perturbations do not require direct
knowledge of the 3d coordinates, but only leverage the hidden representations provided by language
models.

In the large space of all possible 3d structures, only a small portion contains biologically meaningful
proteins. Moreover, high confident scores in structure prediction using AlphaFold2 model do not
necessarily guarantee the plausibility of the native sequences [11]. Generative models [12, 9, 20, 11]
tackle this problem by learning the data distribution in the space of sequences. Hence, they catch
new evolutionary dependencies between the amino acids and generate new samples from the learned
distribution. Our method does not directly rely on a generative architecture, but rather explores the
space of hidden representations while guaranteeing that a set of desired conditions are met. In what
follows, we discuss the approach behind our choices of target positions and mutant residues.

Figure 1: Pseudo-likelihood of adversarial
(columns 1-4) and masked prediction (column
5) mutations at target token indexes. Values
refer to 3 sites mutations obtained from MSA
Transformer on 100 sequences from domain
PF00627.

Target positions Several recent works show that
Transformer language models are able to recover
functional properties of protein sequences [18, 26,
21]. Vig et al. [26], in particular, observe that atten-
tion scores capture structural information and that
most of the attention is directed to binding sites, i.e.
amino acids that are far apart in the sequence but
close in the 3d structure. We use attention scores to
identify token positions having the highest impact on
the surrounding context (i.e. on the remaining amino
acids) and use them as target positions for adversarial
mutations. Let x = (x1, . . . , xN ) ∈ AN be a protein
sequence, where A is the 25-character alphabet of
amino acids1 and N ∈ N is the length of the sequence.
Given a fixed number of token substitutions n < N ,
each attention head h ∈ {1, . . . ,H} in a Trans-
former LM computes a set of attention scores Ah,l(x)
for each layer l ∈ {1, . . . , L} in the architecture. The
resulting target tokens are the first n positional in-
dexes maximizing the Euclidean norm of the average
attention across all layers and heads, i.e. the first n values in arg sorti=1,...,N ||Eh,l[Ah,l(xi)]||2.

Target residues Once target token indexes are fixed, we use Block Substitutions Matrices (BLO-
SUM) [25] to assess the set of allowed substitutions of residues at each position. BLOSUM matrix

120 characters for the standard amino acids and 5 characters for non-standard or unknown amino acids [17].
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contains integer similarity scores between all couples of residues in a sequence. In particular, scores
in the popular BLOSUM62 matrix are based on replacement frequencies observed in known align-
ments with less than 62% sequence similarity [7]. The selection of amino acids at a given position
is restricted to residues with non-null BLOSUM scores, i.e. those with non-null frequency in the
reference alignments, to avoid biologically meaningless substitutions. We also use BLOSUM62
matrix at evaluation time to assess the biological similarity between perturbed and original sequences.
The choice of target residues is performed through a search over all plausible token substitutions that
satisfy a desired “adversarial” property. Given a fixed set of target positions I in a wild-type sequence
x, we propose multiple attack strategies to craft an adversarial perturbation x̃, built upon different
hidden representations of the original sequence but with the common goal of causing a significant
structural change:

• Let z and z̃ respectively denote the continuous embeddings of x and x̃ in the first embedding space,
i.e. the positional embeddings. Maximum distance perturbations indicate token substitutions
z̃ that maximize the L1 distance from z in the first embedding space, i.e. argmaxz̃(||z − z̃||1);

• Protein LMs are trained to solve a masked prediction task, meaning that part of the input
sequence is masked at random positions, and the model has to predict missing residues from
the surrounding context. Therefore, given single candidate residue at a target position i, the
LM outputs a pseudo-likelihood score p(x|x̂i), denoting an approximate likelihood of the full
sequence with the chosen residue, where x̂i is the sequence masked at position i. We define a loss
function L(z̃) = maxi∈I p(z̃|ẑi) that penalizes the highest pseudo-likelihood score attributed
to the first embedding of an adversarial sequence z̃ and use it to build a perturbation inspired
by classical gradient-based attacks in continuous spaces [6]. Maximum cosine similarity
perturbations search for residues that maximize the cosine similarity w.r.t. the loss gradient
direction in the first embedding space, i.e. they build perturbations in the direction of greatest
change in the loss function. More precisely, given a gradient-based attack z∗ = z+ ϵ · ∂L(z̃)/∂z
in the first embedding space, they search for a z̃ that maximizes cos similarity(z∗ − z, z̃ − z) =
cos similarity(∂L(z̃)/∂z, z̃ − z). Notice that this definition does not depend on the intensity ϵ of
the attack;

• Protein LMs provide a reduced representation of the 3d structure, known as contact map, which
consists of a heatmap of estimated distances between all residue pairs in the 3d structure [27].
Maximum contact map distance perturbations maximize the L2 distance between original
and perturbed contact maps: argmaxx̃ ||cmap(x)− cmap(x̃)||2;

• Additionally, we introduce maximum entropy perturbations for MSA Transformer only. Given
an input sequence x with an associated MSA and a set of amino-acid substitutions {cmi

∈ A}i∈I

at target sites I , we use residue substitution frequencies pi(cmi
) in the MSA to compute the

entropy of that substitution. Then, we search for a perturbation that maximizes the entropy:
max{cmi

∈A:i∈I}(−
P

i∈I pi(cmi
) log2 pi(cmi

)).

Evaluation metrics Since protein LMs for structure prediction could be insensitive to single point
mutations [2], we do not only rely on evaluation metrics on the structure [16], but also examine several
evaluation metrics on continuous embeddings of amino acid sequences. The first natural evaluation
metric for sequence similarity is the L1 distance between original and perturbed embeddings in the first
layer of a protein LM, ||z − z̃||1, providing a preliminary geometric interpretation of the distribution
of continuous representations in the first embedding space. We point out that the choice of the first
embedding space to evaluate distances provides a natural baseline for comparison (i.e. maximum
distance perturbations), but it would be interesting to extend this analysis to multiple layers of
hidden representations. Secondly, we leverage BLOSUM62 matrix to compute a biological sequence
similarity measure known as BLOSUM distance: BLOSUM(x, x̃) =

P
i=1,...,N (Bxi,xi

−Bxi,x̃i
),

where Bri,rj is the entry associated to a couple of residues (ri, rj) in BLOSUM62 matrix. BLOSUM
distance is zero when x = x̃ and positive otherwise. Another fundamental information provided by
protein LMs is the predicted contact map, thus we also compute the L2 distance between contact maps
of original and perturbed sequences. It is usual practice to examine upper submatrices in a contact
map and look at the distances between long-range contacts. Therefore, we use an index k ∈ N>0 to
denote the diagonal index of an upper triangular submatrix in a full contact map (k = 0), i.e. we select
contacts that are at least k positions apart, and compute a range of distances ||cmapk(x)−cmapk(x̃)||2
as k increases.
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On the structural side, let s and s̃ respectively denote original and perturbed 3d structures. We
evaluate their similarity by means of both local and global similarity measures to capture the relative
orientation of the deviations as well as the global superimposition between the structures. Local
Distance Difference Test (LDDT) [13] is a local score that measures the percentage of preserved
distances between all pairs of atoms in the target structure closer in space than a predefined cutoff.
In particular, it computes the mean fraction of preserved distances using four different thresholds
(0.5, 1, 2, 4 Å). Then, we use two popular global scores: Root-Mean-Square-Deviation (RMSD)
computes the average Euclidean distance between matching atoms in the two structures; TM-score,
instead, computes the degree of match between corresponding Cα atoms, scaled by a length-dependent
distance parameter. Detailed definitions of the structural measures are provided by [16].

3 Experimental results

Our experiments2 involve two Transformer models trained on Uniref50 database [24], namely ESM-
1b [21] and MSA Transformer [19]. ESM-1b takes as inputs protein sequences and computes pairwise
attention scores between all couples of amino acids. The set of attention scores Rh,l(x) ∈ RN from
an attention head h in the l-th layer is called row attention, where x is the input sequence and
N is the length of the sequence. The resulting attention score used to recover target positions is
Ah(x) := El[Rh,l(x)]. MSA Transformer, instead, works on MSAs [3], i.e. on sets of aligned
protein sequences. In this setting, self-attention mechanism also computes column attention scores
Ch,l(x) ∈ RN from the input MSA and we select positions based on a weighted sum of the two
scores: Ah(x) := γ El[Rh,l(x)] + (1 − γ)El[Ch,l(x)]. In the experiments, we weight the two
contributions equally by setting γ = 0.5. We use the hhfilter method from HH-suite tool [23] to select
a subset of most diverse sequences in the alignment by means of a sequence similarity score based on
the degree of homology among sequences. We build a filtered MSA for each selected sequence to be
used as an input for MSA Transformer. Then, we craft the set of adversarial perturbations presented
in Section 2.

First, we build adversarial mutations on protein families PF00533 and PF00627, both containing
examples of structure disruptive mutations not detected by AlphaFold2 model [2]. For the sake
of brevity, we only report the experiments performed on domain PF00627 in the main text, where
we use MSA Transformer model to build 3 sites mutations on 100 native sequences with input
MSAs of depth 100. We observe a similar experimental behaviour on domain PF00533 and include
the additional experiments in the Appendix. Next, we compare adversarial perturbations to those
provided by ProTherm database [15], containing more than 4k single-point mutations associated
with high changes in stability. Protein stability denotes the capability of a protein to retain the native
conformation under a stress condition (e.g. change in temperature or pressure). Since high changes
in stability are often associated with disease-causing mutations and unfolding, we want to analyze
their statistical properties against those of adversarial mutations. We focus on ProTherm values of
change in free energy ∆∆G to select the most stabilizing (highest ∆∆G) and destabilizing (lowest
∆∆G) mutations. Specifically, we set a threshold of 1kcal/mol on the minimum absolute value of
∆∆G. In this case, we identify the reference sequences belonging to Pfam families and build the
associated filtered MSA accordingly.

Impact of adversarial mutations on wild-type sequences We analyze the effect of adversarial
perturbations using the evaluation metrics described in Section 2. First of all, Figure 1 shows
how adversarial perturbations are overall less likely compared to the residues selected by masked
predictions, suggesting that our method detects rare substitutions at fixed mutant sites. This is an
important argument in favour of the generation of new and diverse disruptive mutations. We compare
adversarial perturbations to the ones obtained from all the discarded plausible token substitutions
at the chosen target positions, which we refer to as “other” in Figures 2a and 3a. Figure 2 reports
the L1 distances ||z − z̃||1 between original and perturbed first layer embeddings, while Figure 3
shows BLOSUM distances between original and perturbed sequences. Adversarial perturbations
significantly depart from the other plausible perturbations both in terms of embedding distance
(Figure 2a) and BLOSUM distance (Figure 3a), approaching perturbations at maximum embedding
distance in the first case. Adversarial embeddings are at least as far from the reference as the most
stabilizing and destabilizing embeddings in ProTherm (Figure 2b), while BLOSUM distances are

2Code is available at https://github.com/ginevracoal/adversarial-protein-sequences.
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(a) (b)
Figure 2: L1 distances ||z − z̃||1 between the embeddings of original and perturbed sequences in the
first embedding space. Perturbations are computed using MSA Transformer model. In (a) we report
mutations of 3 sites on domain PF00627, while Figure (b) shows single mutations on ProTherm
database. “Other” refers to adversarial perturbations obtained from all the discarded plausible token
substitutions at the chosen target positions.

(a) (b)
Figure 3: Blosum distances BLOSUM(x, x̃) between original and perturbed sequences. Perturbations
are computed using MSA Transformer model. In (a) we report mutations of 3 sites on domain
PF00627, while (b) shows single mutations on ProTherm database. “Other” refers to adversarial
perturbations obtained from all the discarded plausible token substitutions at the chosen target
positions.

comparable (Figure 3b). Moreover, Jha et al. [7] observed that larger BLOSUM distances between
original and perturbed sequences lead to higher RMSD in predicted structures, therefore we expect
adversarial perturbations to produce a significant structural change. We stress that adversarial mutant
positions for ProTherm are those that maximize the attention scores and, in most cases, differ from
ProTherm mutation sites. Nonetheless, adversarial sequences are able to significantly alter embedding
distances, BLOSUM distances and contact maps distances (see the Appendix for additional results),
suggesting that our attention-based selection method catches new relevant mutant positions.

Predicted adversarial structures are substantially altered and highly confident We analyze
the effect of adversarial perturbations on 3d structures predicted by ColabFold [14], an extension of
AlphaFold2 model. First, we select the 100 most diverse sequences from domain PF00627 using
hhfilter method, as explained at the beginning of this chapter. Since our goal is to generate adversarial
mutations that are able to “fool” structure prediction models, the latter should be highly confident in
predictions. Therefore, we rely on the pLDDT confidence score for structure prediction provided by
AlphaFold2 model, and among the 100 original sequences we select the ones whose average (over
residues) pLDDT is greater than 80%, for a total of 37 sequences. Then, we build the adversarial
perturbations, predict their 3d structures and compare them to the original predicted structures. Figure
4 reports LDDT, TM-score and RMSD (presented in Section 2) between original and perturbed
3d structures on among the selected sequences. Figure 11 in the Appendix reports the resulting
adversarial pLDDT scores, as well as another accuracy measure for structure prediction, namely
the pTM-score. Adversarial mutations exhibit high confidence in structure prediction and produce
structures that are significantly distant from their references in terms of global distance. In particular,
low TM-scores and high RMSD scores, consistently across the several attack techniques, indicate that
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Figure 4: LDDT, TM, and RMSD scores between original and perturbed structures for 3 sites
mutations on 100 sequences from domain PF00627. Adversarial perturbations are computed by MSA
Transformer model, while structure predictions are performed in ColabFold.

adversarial structures deviate from the original folding. As a matter of comparison, it is important
to observe that two structures with 50% sequence identity align within approximately 1Å RMSD
[4], and two proteins with even 40% sequence identity and at least 35 aligned residues align within
approximately 2.5Å [22]. Higher LDDT scores in Figure 4 instead show that local atomic interactions
in the original structure happen to be preserved in adversarial structures, especially for maximum
entropy perturbations.

4 Conclusions and future directions

Adversarial perturbations on Protein Language Models produce substantial changes according to
several geometric, biological, and structural evaluation scores compared to the reference sequences.
Additionally, they introduce a new efficient attention-based method for the selection of target positions
in the reference sequences. Nonetheless, we point out the presence of some limitations, which we
plan to address in future versions of this work. Precisely, we intend to: (1) propose a more extensive
empirical evaluation on several protein families and include structure prediction on databases of
dysfunctional mutations, (2) fine-tune protein LMs on adversarial sequences and test their sensitivity
to a set of known missense mutations. We believe that adversarial perturbations could help to improve
the sensitivity of protein LMs to dysfunctional mutations, therefore opening a new path for a deeper
understanding of the connection between protein stability and variations in the 3d structures.
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