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Abstract

Aligning electron density maps of multiple conformations of a biomolecule from
Cryogenic electron microscopy (cryo-EM) is a first key step to study conformational
heterogeneity. As this step remains challenging, with standard alignment tools
being potentially stuck in local minima, we propose here a new procedure, which
relies on the use of computational optimal transport (OT) to align EM maps
in 3D space. By embedding a fast estimation of OT maps within a stochastic
gradient descent algorithm, our method searches for a rotation that minimizes the
Wasserstein distance between two maps, represented as point clouds. We show that
our method outperforms standard methods on experimental data, with an increased
range of rotation angles leading to proper alignment, suggesting that it can be
further applied to align 3D EM maps.

1 Introduction

1.1 Background

Solving the 3D structures of biomolecules is key to understanding their function and the mechanisms
underlying biological processes. For this purpose, cryogenic electron microscopy (cryo-EM) has
become in recent years the most used technique to solve structures [1]. One main advantage of this
technique, in contrast with X-ray crystallography, is that it potentially allows various conformations
(or 3D configurations) of the same molecule to be solved [2]. Once different conformations are
obtained as EM density maps, i.e., large 3D grids of voxels with different levels of intensities
(typically ∼ 1003 to ∼ 5003 voxels), aligning these maps is needed to further compare them.
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Efficient methods have been developed to align two protein structures [3, 4], assuming their atomic
composition is known. In this case, aligning two conformational structures is tantamount to finding
an optimal rigid body transformation (i.e. a combination of 3D translation and rotation) that can align
homologous atoms. However, when density maps are only given, one cannot directly establish such
a homology correspondence from voxel to voxel, so the same problem becomes more challenging
as the grid size increases and with the computational cost of searching over all possible rigid body
transformations.

1.2 Main contributions

In this paper, we introduce a novel approach, called AlignOT, for 3D alignment of density maps.
More precisely, using a point-cloud representation of 3D maps, AlignOT uses a stochastic gradient
algorithm that minimizes the so-called Wasserstein distance between two maps. This non-Euclidean
distance is associated with the theory of Optimal Transport (OT) [5], with recent advances that make
tractable the computation of transport-based distances [6, 7]. After describing the procedure in detail,
we run it on experimental data to quantify its accuracy, and show that it outperforms standard local
alignment methods.

1.3 Related work

To solve the rigid body alignment problem for 3D cryo-EM density maps, standard approaches use
various algorithms to maximize correlation [8, 9, 10]. More recently, Han et al. introduced a new
method, which relies on representing the maps as sets of unit vectors before performing alignment
[11]. Overall, both the choice of the metric to optimize, as well as the representation of the maps, can
play important roles in getting a successful alignment. In the more general context of solving a rigid
body alignment problem, the Iterative Closest Point method (ICP) [12], that consists of iteratively
moving the point clouds according to the best way to match them, provides a framework for more
recent methods [13]. Among these variants of the ICP, Grave et al. employed the Wasserstein distance
to align language models [14], but has not been applied to the context of 3D rotations.

2 Methods

2.1 Background on Optimal Transport and Wasserstein distance

We use a non-Euclidean metric that derives from the theory of Optimal Transport [5]. For two given
point clouds, A = {a1, . . . , an} and B = {b1, . . . , bn}, we define a cost matrix Ci,j = d(ai, bj)

2,
where d is the Euclidean distance. The entropy regularized 2-Wasserstein distance between A and B,
denoted by W2,ϵ(A,B), is then defined as

W2,ϵ(A,B) = [ min
P∈Rn×n

+

n∑
i,j=1

Ci,jPi,j + ϵH(P )]1/2

s.t. P.1 = PT .1 = 1/n

, (1)

where ϵ ∈ R+ is the regularization parameter and the entropy H(P ) is given by

H(P ) =

n∑
i,j=1

Pi,j logPi,j . (2)

The minimizer of equation (1) is called the transport plan. For the rest of the Methods section, we
will simply denote the Wasserstein distance as W2,ϵ, and Pi(a),i(b) as Pa,b, where i(a) and i(b) are
the indices of the two points a and b in A and B, respectively.

2.2 3D map alignment with computational Optimal Transport

To align two 3D EM maps (A and B), we first represent them by point clouds i.e., a set of n points
∈ R3 (A and B). To do so, we use the topology representing network algorithm (TRN) [15] which
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has been previously applied to EM density maps [16]. From the point cloud representations A and
B, we solve the optimization problem

qopt = argmin
q∈H

W2,ϵ(Rq(A),B), (3)

where q is a quaternion (defined over the quaternion space H), that we identify to a 3D rotation Rq

in SO(3), so Rq(A) = {Rq(ai)|ai ∈ A}.We explain in Appendix A why we can only consider
rotations and ignore translations to solve the general alignment problem, and provide more details on
the identification of q to Rq in Appendix B. Our stochastic gradient descent procedure to solve (3),
called AlignOT, is detailed in Algorithm 1 in Appendix C. At each iteration, the algorithm updates q
from the transport plan P between Rq(A) and B as follows: After sampling one point a ∈ Rq(A),
we evaluate π(a) = argmaxb∈B Pa,b, and compute the gradient in q associated with d(π(a), a)2,
where d is the Euclidean distance, to update q. To compute the transport plan, we apply the Sinkhorn
algorithm [6], with the initial vectors set as the outputs of the previous iteration. In practice, we also
set the convergence condition ∥d(π(a), a)2∥ < δ (where δ > 0), that stops the algorithm before the
maximum number of iterations. With the most limiting part of this algorithm being the evaluation of
the OT plan matrix, the overall time complexity of the algorithm is O(n2L log nϵ−3), where n is the
size of the point cloud.

The hyperparameters of this procedure are the learning rate α associated with gradient descent, the
regularization parameter ϵ associated with the Wasserstein distance, and a threshold δ associated
with the number of iterations. In all our experiments, we set ϵ = 100, δ = 10−10, and the maximum
number of iterations equal to 500.

2.3 Implementation

We implemented AlignOT in Python 3.6.4. To sample a point cloud representation of an EM map
using TRN, we adapted code from ProDy [17]. We used the NumPy package for matrix operations
and POT’s implementation of the Sinkhorn algorithm, which was modified to set the initial vectors
(instead of initializing with uniform vectors). Our code will be available upon publication.

2.4 Dataset

5fwm 5fwl

Figure 1: 3D maps used in our experiments, visualized
with Chimera [8], representing different conformational
states of Hsp90-Cdc37-Cdk4 complex.

To evaluate our method, we tested Alig-
nOT on aligning two point clouds ob-
tain from a conformationally heteroge-
neous pair of density maps. To do so, we
used two atomic cryo-EM structures of
Hsp90-Cdc37-Cdk4 complex (PDB:5fwl
and PDB:5fwm) [18], shown in Figure
1. We applied MM-align [3] to define
a ground truth alignment. This ground
truth was used to evaluate the perfor-
mance of AlignOT, as well as Chimera’s
fitmap, which we used for benchmark-
ing against our method. Finally we used
Chimera’s molmap command to generate
density maps from aligned structures.

3 Results

3.1 Alignment of maps from different conformations

To test AlignOT on our dataset (see Section 2.4), we sampled two clouds of 500 points, and applied a
rotation defined in its axis-angle representation by an arbitrary axis, and an angle θ = 50◦. Figure
2a illustrates how the moving point cloud gets closer to the targeted one over the iterations of the
algorithm, until the convergence criterion is reached. To confirm this visual impression, we repeated
the procedure with different initial angles θ ∈ {10◦, 30◦, 50◦, 70◦}. The corresponding Wasserstein
distance obtained across the iterations is shown in Figure 2b, with all the four trajectories converging
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Figure 2: Alignment of two point clouds obtained from two conformationally heterogeneous com-
plexes (PDB:5fwm and PDB:5fwl) using AlignOT (a): We generated two point clouds of aligned
structures that differ from a 3D rotation, and applied AlignOT. The figure shows the result of the
procedure at different iterations (t = 1, 100, 500). The blue and red dots represent the rotated and
target point clouds, respectively. (b): For different initial values θ (= 10◦, 30◦, 50◦, 70◦) of the angle
difference between the two maps and same rotation axis, we plot the Wasserstein distance between
the two target and rotated point clouds across the iterations of the algorithm, showing that they all
converge to the same limit. (c): For the same rotation axis as in (b), we plot the average Wasserstein
distance between two sampled point clouds as a function of θ, for point clouds of size 500. Error
regions show the standard deviation from sampling 100 different point clouds for each angle. (d):
Alignment success rate of AlignOT at fixed angles θ = 45, 75, and 90◦, and over the rotation axes
that cover the upper hemishpere of S2. Heatmaps show the percentage of outcomes that result in an
alignment with error ≤ 5◦, where each point of the disk is the projection of the axis considered in S2

(89 in total, with 20 runs for each).

to the same value and resulting in a successful alignment. However, we also observed that as θ
increases, it takes more iterations for the algorithm to converge, with longer periods of slow variations
at the beginning of the procedure, suggesting that this alignment can only be achieved within a
certain range of θ. To interpret these results, we further plotted in Figure 2c how the Wasserstein
distance varies on average (after sampling different point clouds of size 500), as a function of θ (and
same rotation axis). This observation shows a strong global minimum at θ = 0 with no significant
local minima which foreshadows AlignOT good results, however, the low magnitude of gradient for
rotations with high angle can be problematic for the convergence. We finally evaluated the probability
to successfully align the maps for initial rotations of fixed angle θ (45, 75 and 90◦), and across
different axes covering half of the sphere S2. Upon mapping the axes on the planar disk in Figure 2d,
we found local regions of poorer alignment. These results also confirm the existence of a limiting
range within which the method can align two maps. While a successful alignment is overall obtained
for θ = 45◦, the maps get partially aligned in different regions of the disks for 75◦ (see Figure 2d),
with the performance worsening as θ increases. On average, each of these alignments by AlignOT
took 16.36 seconds on an Intel(R) Core(TM) workstation with i7-7700HQ CPU @ 2.80GHz 2.81
GHz with 16.0 GB RAM.

3.2 Benchmarking against Chimera fitmap alignment function

As mentioned in the previous section there is a limiting range within which the method can align two
maps. We further investigate this range for AlignOT and compare it with Chimera’s fitmap local
search, which performs a steepest ascent optimization to align maps according to their overlapping
score [8, 19]. To do so, we used initial rotations with a fixed axis and across different angle 0◦ ≤ θ ≤
180◦, and then applied AlignOT and fitmap. As shown in Figure 3, AlignOT outperforms fitmap
local search with an increased range of convergence (from ∼ 55◦ to ∼ 115◦ in this experiment).
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Figure 3: Comparison between AlignOT and fitmap:
With a fixed axis and for a rotation angle difference θ ∈
(0, 180) degrees, we run AlignOT and fitmap to align
maps from PDB:5fwm and PDB:5fwl. The blue dots show
the error obtain in the alignment using fitmap, while the
box plot (minimum, first quartile, median, third quartile,
and maximum over 10 runs) the error of AlignOT.

Under more general conditions, we also
performed a comparison with fitmap
using different values of point cloud size
n ∈ {250, 500, 1000} and initial rota-
tion angle θ ∈ {45◦, 60◦, 90◦}, with 89
rotation axes that cover the upper hem-
ishpere of S2. The angle differences be-
tween the ground truth alignment and the
output, as reported in Table 1, show that
over all three test cases, AlignOT outper-
formed fitmap on average, with some
significant improvement observed as θ
increases. Our experiments also confirm
the improvement of the range of conver-
gence using AlignOT, which we illus-
trated in Figure 3. These results suggest
that the Wasserstein distance, which de-
termines the objective function of our
method, is a more appropriate metric to
use than the Euclidean norm.

Table 1: Benchmarking of AlignOT on maps listed in Section 2.4. Using initial rotation angles
θ ∈ {45◦, 60◦, 90◦} , across 89 different axes covering half of the sphere S2 (with 20 runs for each),
and point cloud sizes n ∈ {250, 500, 1000} we ran AlignOT and fitmap and recorded the angle
difference between the resulting algorithm and the ground truth. Finally, we reported the mean and
the standard deviation of recorded angle differences among all experiments with the same method
and the same initial angle, with the best results for each angle highlighted in bold.

Angle fitmap AlignOT
n = 250 n = 500 n = 1000

45 2.02
±5.41

5.94
±15.79

3.77
±11.68

2.02
±1.22

60 26.10
±19.97

9.37
±28.47

6.64
±24.80

3.37
±14.33

90 60.52
±16.78

17.454
±45.22

26.27
±58.88

16.71
±47.56

4 Discussion

In this paper, we present a new method for aligning cryo-EM density maps that relies on minimizing
the Wasserstein distance between sampled point clouds. As shown in our experiments, AlignOT is
scalable to the typical size of density maps, and can be used to quickly align maps that come from
different conformations of the same protein or complex. In particular, optimizing for a transport-based
metric, instead of other common metrics (e.g. overlap, correlation), allows AlignOT to generally
outperform the standard local optimization method implemented in Chimera. Interestingly, the
Wasserstein (or Earth-mover) distance was used in other applications in cryo-EM and tomographic
projections (e.g. in interpolation or clustering [20, 21, 22, 23]), as its natural interpretation as the
cost of displacing mass between two distributions makes it appropriate to compare volume-objects.

From the current results, it would be interesting to explore how to possibly improve our method on
several aspects. While the choice of the TRN algorithm to generate point clouds is justified by its
previous use to represent molecular structures [24], it can also be replaced by any other point cloud
generation method, and it would be interesting to explore how to possibly improve our method on
this aspect (in particular, we could for example use Vector Quantization, as it also has been used
for approximating EM maps [25, 26]). A more thorough study would also be needed to study the
impact various hyperparameters of AlignOT (e.g. learning rate and point cloud size values), and
how to fine tune them to achieve the best compromise between speed and accuracy. Finally, one can
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extend the present alignment problem to the important case of fitting two maps of different sizes, with
one representing only a part of the other [9, 27]. This problem can be naturally formulated in our
framework as a problem of unbalanced, or partial Optimal Transport [28]. The recent development of
computational methods to solve it [29, 30] makes such a generalization of AlignOT another promising
future direction to pursue.
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Appendixes

A Optimal translation for the rigid body alignment problem

To formalize the rigid body alignment problem, assuming that the EM maps are represented by
two 3D point clouds A = {a1, . . . , an} and B = {b1, . . . , bn}, and for a given distance function d
defined over the space of point clouds, the problem of aligning these maps consists of finding a rigid
body transformation that minimizes the objective function

Ld(R, T ) = d(moveR,T (A),B)2, (4)
where Ld(R, T ) is defined over rotation matrices R ∈ SO(3) and translation vectors T ∈ R3, and
the operator moveR,T (A) is defined as

moveR,T (A) = {Rai + T |ai ∈ A}. (5)

As the choice of d influences both the accuracy and the computational cost of the solution to the
rigid body alignment problem, we here use the 2-Wasserstein distance, associated with the theory
of Optimal Transport [5]. This distance can be used to compute distances between probability
distributions, and is applied here more specifically for two distributions of 3D point clouds of same
size. To efficiently evaluate this distance, we consider a regularized version (see equation (1) in
the Methods section 2.1), denoted W2,ϵ. Besides, given the centers of mass ā = 1

n

∑n
i=1 ai and

b̄ = 1
n

∑n
i=1 bi, and the centered point clouds Ac = {aci = ai − ā|ai ∈ A} and Bc = {bci =

bi − b̄|bi ∈ B}, we can show that the optimal translation of the objective function (4) is

Topt = b̄−Roptā, (6)
where

Ropt = argmin
R∈SO(3)

W2,ϵ(R(Ac),Bc). (7)

To do so, using previouse definitions equation (4) yields

L(R, T ) = W2,ϵ(moveR,T (A),B)2 (8)

= min
P∈Rn×n

+

n∑
i,j=1

∥Rai + T − bj∥22Pi,j + ϵH(P )

(s.t. ∀1 ≤ j ≤ n :

n∑
i=1

Pi,j =

n∑
i=1

Pj,i =
1

n
) (9)

= min
P∈Rn×n

+

n∑
i,j=1

∥Raci +Rā+ T − bcj − b̄∥22Pi,j + ϵH(P ), (10)

where we used definition of the entropy regularized Wasserstein distance from Equation (1). This
further simplifies as

L(R, T ) = min
P∈Rn×n

+

n∑
i,j=1

∥Raci − bcj∥22Pi,j +

n∑
i,j=1

∥Rā+ T − b̄∥22Pi,j

+

n∑
i,j=1

(Raci − bcj ).(Rā+ T − b̄)Pi,j + ϵH(P ) (11)

= min
P∈Rn×n

+

n∑
i,j=1

∥Raci − bcj∥22Pi,j +

n∑
i,j=1

∥Rā+ T − b̄∥22Pi,j + ϵH(P ) (12)

= min
P∈Rn×n

+

[

n∑
i,j=1

∥Raci − bcj∥22Pi,j + ϵH(P )] + ∥Rā+ T − b̄∥22 (13)
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where in (11) we used the fact that
∑n

i,j=1 Pi,jaci = 1
n

∑n
i=1 aci = 0 and

∑n
i,j=1 Pi,jbcj =

1
n

∑n
j=1 bcj = 0. Also, we used the fact that

∑n
i,j=1 Pi,j = 1 in (12). The second term in Equation

(13) is minimized for T = b̄−Rā, i.e. the translation that aligns the two centers of mass. Thus, the
search for an optimal rigid body transformation in (7) can be simplified to rotations after matching
the centers of mass of A,B, leading to equation (3) of the Methods section 2.1.

B Quaternion Representation of 3D rotations

To formalize 3D rotations in AlignOT we use the quaternion representation (H). In this representation,
given a point a = (x, y, z) ∈ R3 and a rotation with angle θ around axis u⃗ = (ux, uy, uz) , we form
quaternions

q = cos θ/2 + ux sin θ/2i+ uy sin θ/2j + uz sin θ/2k, (14)
p = xi+ yj + zk, (15)

where i, j, k are the basic quaternions such that

i2 = j2 = k2 = ijk = −1. (16)

Using equation (16) we compute the following term

xresi+ yresj + zresk = qpq∗, (17)

where Rq(a) = (xres, yres, zres) ∈ R3 is the coordinates of a after rotation, and q∗ is the conjugate of
q and is defined as

(q0 + q1i+ q2j + q3k)
∗ = q0 − q1i− q2j − q3k. (18)

We then define the absolute norm of q as

∥q∥2 = qq∗ = q20 + q21 + q22 + q23 ∈ R. (19)

In AlignOT, we also compute the gradient associated with the function f(q) = f(q0, q1, q2, q3) =
∥Rq(a)− b∥22, where a, b ∈ R3 as

∇f =
∂f

∂q0
+

∂f

∂q1
i+

∂f

∂q2
j +

∂f

∂q3
k.

C Alignment procedure

Algorithm 1 AlignOT: 3D density maps alignment with SGD using unit quaternions and Wasserstein
distance

Input two 3D density maps A,B, number of sampled points n ∈ R, learning rate α ∈ R,
regularization parameter ϵ ∈ R, maximum number of iterations L ∈ N, and gradient threshold δ ∈ R

1: Sample two sets of n points A,B ⊂ R3 from A,B respectively, using TRNs
2: q = 1 + 0i+ 0j + 0k
3: G = α2

4: while not converged and the number of iterations is at most L do
5: Compute Rq(A)
6: Compute P to be the OT plan matrix between Rq(A) and B
7: Randomly select a ∈ Rq(A)
8: b = π(a)
9: f(q) = d(Rq(a), b)

2 (where d is Euclidean distance in R3)
10: G = G+ ∥∇f(q)∥2
11: q = q − α√

G
×∇f(q)

12: q = q
∥q∥

13: end while
14: return q
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