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Abstract

Recent developments in deep learning-based methods demonstrated its potential
to predict the 3D protein structures using inputs such as protein sequences, Cryo-
Electron microscopy (Cryo-EM) images of proteins, etc. However, these methods
struggle to predict the protein complexes (PC), structures with more than one
protein. In this work, we explore the atomic force microscope (AFM) assisted deep
learning-based methods to predict the 3D structure of PCs. The images produced
by AFM capture the protein structure in different and random orientations. These
multi-view images can help train the neural network to predict the 3D structure of
protein complexes. However, obtaining the dataset of actual AFM images is time-
consuming and not a pragmatic task. We propose a virtual AFM imaging pipeline
that takes a ’PDB’ protein file and generates multi-view 2D virtual AFM images
using volume rendering techniques. With this, we created a dataset of around 8K
proteins. We train a neural network for 3D reconstruction called Pix2Vox++ using
the synthesized multi-view 2D AFM images dataset. We compare the predicted
structure obtained using a different number of views and get the intersection over
union (IoU) value of 0.92 on the training dataset and 0.52 on the validation dataset.
We believe this approach will lead to better prediction of the structure of protein
complexes.

1 Introduction

Accurate prediction of a 3D protein structure based on its amino acid sequence has been a challenging
research task for more than a five decades [1] and is fundamentally important since the structure
defines the functionality of proteins [2]. Researchers have been utilizing and improving experimental
methods like x-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-
electron microscopy (cryo-EM) to determine the 3D structures of proteins [3–6]. Improvements in
experimental methods have increased the availability of structural data for a large number of proteins.
In parallel, the advancements in deep learning (DL) have had a significant impact on protein structure
prediction, with the development of AlphaFold2 [7] and RoseTTAFold [8]. Combining DL with
advancements in cryo-EM imaging of single particle analysis enabled the determination of protein
structure and complexes. However, Cryo-EM images can be very noisy, with a signal-to-noise ratio
as low as −20dB [9]. In addition, the Cryo-EM experiments are expensive and can cost up to $1500
per structure [10].

Another way to infer the structure of proteins is to learn the mapping from a protein’s sequence of
amino acids to its structure. These methods include the use of Position Specific Scoring Matrices
(PSSM) [11], which compute the single residue mutation frequency distribution, and Multiple
Sequence Alignment (MSA), which determines the co-evolutionary information [12, 13]. AlphaFold2
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Figure 1: AlphaFold2 multimer (right) fails to predict the structure of WRC protein complex (left).

uses entire MSAs and a template-directed inference process. However, AlphaFold2 is not as effective
in predicting the structure of protein complexes where proteins are bonded together. For example
AlphaFold2-multimer [14], which is trained specifically for protein complex structure prediction, fails
to predict the structure of the WRC protein complex [15–18] as seen in Figure 1. As In Silico methods
are unable to infer the structure of protein complexes in certain cases, and Cryo-EM methods can be
expensive and time-consuming, we propose to train the DL model with images captured using Atomic
Force Microscopy (AFM). AFM is a part of scanning probe microscopy, a non-invasive technique
that provides the platform for high-resolution imaging of proteins in their physiological environment
without prolonged, complicated sample preparation techniques (freezing, drying, dye-tagging) that
ultimately damage these soft samples.

With these advantages of AFM, we propose a novel approach to infer the 3D structure of protein com-
plexes using a neural network that is trained using multi-view AFM images. We use Pix2Vox++ [19]
neural network architecture for predicting the 3D protein structure. We explain the details of the
architecture in Section 2. Even though AFM is not as expensive as Cryo-EM, experimentally ac-
quiring the AFM image dataset for training is not a practical solution. Hence we develop a virtual
AFM imaging pipeline to generate multiple views of the protein complexes using a volume rendering
technique. We discuss this virtual imaging process in detail in Section 3. We show our preliminary
results in Section 5. Finally, we conclude our work with some future direction in Section 6.

2 Method

We implement the Pix2Vox++ neural network architecture, which was proposed for the 3D recon-
struction of the shape of an object using single or multiple images. The goal is to predict the 3D shape
represented in the voxel occupancy grid where 0 value indicates the empty voxel and 1 indicates the
occupied voxel. It includes four blocks: encoder, decoder, multi-scale context-aware merger, and a
refiner. The overall forward pass is summarized in Figure 2. The encoder takes each input image
and transforms it into latent space feature maps. Next, the decoder processes each latent feature map
and generates a 3D volume for each input image. These generated 3D volumes are fused into one
using a multi-scale context-aware fusion block. It adaptively assigns the weight for each voxel in
all 3D volumes to select high-quality reconstruction. In the end, the refiner further improves the
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Figure 2: The architecture of Pix2Vox++ neural network which reconstructs the 3D shape from
multi-view 2D images.
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Figure 3: Volume rendering of 3D voxelized protein structure to obtain AFM-like 2D images.

reconstruction by rectifying the inaccurate parts in generated fused 3D shape and outputs the final 3D
shape.

The encoder uses 2D convolutional layers to transform input images into latent representation feature
maps, which decoders will use to generate 3D volume per image. Using 2D convolutional layer
followed by non-linearity ReLU function, batch-normalization, and then max-pooling operation to
encode the image into 4× 4× 256 feature map. The feature map is then reshaped to 2× 2× 2× 512
and fed into the 3D transposed convolutional layer, followed by the ReLU function, which up-
samples the feature map into a 3D volume for each input image. As the inputs are multi-view images,
reconstruction from the visible parts is better than the invisible parts, and this observation can be used
to adaptively select the high-quality parts from each generated volume. Multi-scale context-aware
fusion block combines these selected high-quality parts into a single 3D volume. This block uses
convolutional layers with non-linearity functions to generate the score per voxel per 3D volume,
a higher score for better quality reconstruction. Finally, the refiner tries to correct the incorrect
reconstruction in the fused volume. The refiner uses a network similar to U-Net [20] to output the
final 3D shape.

3 Dataset

We have developed the pipeline to generate the virtual multi-view AFM images from a ’PDB’ format
protein file. First, we download the ’PDB’ files of proteins from the Protein Data Bank. Using PyMol
software often used to visualize proteins, we transform the ’PDB’ format structure into a 3D mesh
’OBJ’ file format. Proteins can be visualized in various representations such as surfaces, spheres,
sticks, cartoons, or ribbons. We export the ’OBJ’ files for surface representations. We then use
GPU-accelerated algorithm [21] to voxelized the 3D mesh. The resolution of the voxelization is set
to 256 voxels along the longest dimension, and then zero padding is performed along the remaining
dimensions, so the final voxelized structure has the resolution of 256× 256× 256. For the current
work, we down-sample this high-resolution structure to a 32× 32× 32 grid.

The GPU-accelerated volume rendering technique is used to get the 2D projections of the voxelized
3D protein structure as shown in Figure 3 to replicate the AFM imaging task. We rotate the 3D
structure randomly in 3D space to obtain the multi-view images. A total of 25 multi-view images
are saved using an image format. Using this data pipeline, we construct the dataset of around 8K
protein samples containing the pairs of voxelized structures and corresponding 25 multi-view virtual
AFM images. Additionally, we performed high-resolution (nanometer scale) imaging of the single
molecules of the WRC protein-complex [15–18, 22]. We also generate the virtual AFM images of
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the WRC complex. These WRC samples, both actual and synthesized images, will be the testing
samples instead of testing the trained network on the actual AFM images.

4 Training Details

We split the dataset into training and validation datasets. The 80% of the data forms the training set,
and the remaining 20% forms the validation set. As we have generated 25 random views for each
protein structure, we can experiment with a different number of views as input to the network. To
increase the number of samples, we repeat the samples four times with different views as inputs but
the same 3D structure as output. The input RGB image resolution used is 224 × 224 × 3 and the
output resolution is 32× 32× 32. The total number of parameters in the neural network is around
58.9Mn. A binary cross-entropy (BCE) loss function is used as we are predicting the occupancy 3D
voxel grid. We use a batch size of 32 and train for 150 epochs. We use the learning rate of 0.001 with
the Adam optimizer [23]. We used NVIDIA A-100 GPUs for running all the experiments.

5 Results and Discussion

We compute the intersection over union (IoU) metric between ground truth and predicted 3D structure;
the value is between 0 and 1, while 0 denotes the no overlap and 1 denotes the perfect overlap. We
evaluate the IoU value on training, validation data set, and test data with actual AFM images. We
also compare the results using a different number of views. We summarize these experiments and
corresponding metrics in Table 1. We observe a significant difference between training and validation
metrics, which shows that we are overfitting. We tried other techniques to overcome the overfitting
issue, such as using L-2 regularization, different learning rates, and a learning rate scheduler, which
didn’t help to avoid the problem.

Table 1: Comparing the IoU metrics for different number of views.

#views Train IoU Validation IoU Test IoU

3 0.89 0.50 0.19
5 0.91 0.51 0.24
8 0.92 0.51 0.20

10 0.92 0.52 0.22

We tried training the network with the actual images added to the training set to determine if the
network could learn from actual AFM images. We visualize the prediction and compare it to the
ground truth structure in Figure 4. We also show some anecdotal samples from the training and
validation set in Figure 5 and Figure 6, respectively.

Predicted structureGround truth

Input 5 actual AFM images in different views

Figure 4: Comparing the visualization of ground truth and predicted structure using actual AFM
images. We train the network with the actual AFM images added to the training dataset.
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Figure 5: Predictions on samples from training dataset.
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Figure 6: Predictions on samples from validation dataset.

6 Conclusions

In this work, we propose to use AFM imaging-based deep learning 3D reconstruction approach to
predict the 3D structure of protein complexes. We utilized the GPU-accelerated volume rendering
technique to replicate the AFM imaging process through which we can generate the virtual AFM-like
images from the “PDB” formal file of proteins. We generated 8K protein samples and trained the
Pix2Vox++ architecture for 3D reconstruction using multi-view AFM images. Although we are
facing the problem of overfitting, we could validate the approach by adding actual AFM images into
the training data set and predicting the structure of the WRC protein complex. In future work, we
will generate more data samples. We plan to provide additional input to the neural network, such as
protein sequence embedding using large language models trained for protein sequences.
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Appendix

A Examples of Virtual AFM images

We show some examples of generated virtual multi-view AFM images. We also compare the actual
and virtual AFM images of WRC protein complex.

Protein structure 

in PyMOL
Virtual AFM 

images

Actual AFM 

images

Figure 7: Comparing the virtual and actual AFM images.

3D Structure 2D Multi-view virtual AFM images

Figure 8: Showing the examples for virtual multi-view AFM images.
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