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Abstract

Variational autoencoder (VAE) is a popular method for drug discovery and there
had been a great deal of architectures and pipelines proposed to improve its per-
formance. But the VAE model itself suffers from deficiencies such as poor man-
ifold recovery when data lie on low-dimensional manifold embedded in higher
dimensional ambient space and they manifest themselves in each applications dif-
ferently. The consequences of it in drug discovery is somewhat under-explored.
In this paper, we study how to improve the similarity of the data generated via
VAE and the training dataset by improving manifold recovery via a 2-stage VAE
where the second stage VAE is trained on the latent space of the first one. We
experimentally evaluated our approach using the ChEMBL dataset as well as a
polymer datasets. In both dataset, the 2-stage VAE method is able to improve the
property statistics significantly from a pre-existing method.

1 Introduction
The use of generative models in the domain of drug discovery has recently seen rapid progress.
These methods can leverage large-scale molecule archives describing the structure of existing drugs
to synthesize novel molecules with similar properties as potential candidates for future drugs [Du-
venaud et al., 2015, Liu et al., 2018, Segler et al., 2018, You et al., 2018, Jin et al., 2018, 2020a,
Polykovskiy et al., 2020, Jin et al., 2020b, Satorras et al., 2021]. There are two common ways of
representing the structure of molecules SMILES strings [Weininger, 1988] and molecular graphs
[Bonchev, 1991]. Graph neural networks can make effective use of the rich molecular graph repre-
sentations by taking into account the atoms, edges and other structural information. SMILES strings
convey less information about the molecular structure, but are more compatible with sequence mod-
els such as RNNs. Being able to generate valid molecules is the first step to machine learning
drug discovery and various solutions have been proposed. For example, GNN methods [Liu et al.,
2018, Jin et al., 2020a, Simonovsky and Komodakis, 2018] can constraint the output space based
on the chemical rules and SMILES-based [Gómez-Bombarelli et al., 2018, Blaschke et al., 2018]
approaches benefit from the abundant molecular data.

Despite the valid molecule outputs, the properties of the generated molecules, such as drug-
likeness(QED) [Bickerton et al., 2012], Synthetic Accessibility Score (SA) [Ertl and Schuffenhauer,
2009] and molecular weight (MW) etc., are critical factors that decide whether they can be syn-
thesized in a laboratory and be effective in real world applications. In order to learn to generate
molecules that fulfill these properties, researchers curated molecule datasets for targeted purposes,
such as ChEMBL [Mendez et al., 2019] and ZINC [Irwin and Shoichet, 2005]. The motivation is
that by learning from a curated set of molecules, the generative models will learn to generate similar
ones. Benchmark metrics [Polykovskiy et al., 2020] are created to measure how similar the gener-
ated molecules are to the target dataset but the results show that we still have more room to improve
on this front. Learning to generate molecules that exhibit similar molecular properties to those in
the target dataset is a prerequisite to achieve the desired properties in the generated molecules.
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Figure 1: Overview of 2-stage VAE. In the first stage, the VAE trains with the molecule data xi and
obtain the latent variables vi’s from each of the training points. vi’s become the input of the second
stage VAE. The second stage VAE’s input dimension is equal to the output dimension. During
sampling time, we sample z N (0, I) and obtain v through the second stage decoder. It is then used
as the latent variable for the first stage VAE to be decoded into a molecule.

In this paper, we introduce an easy-to-implement step to the VAE approach – training an additional
VAE to generate the latent for the first-stage VAE– to improve the property metrics of the generated
molecules by mitigating the manifold recovery problem. Experimentally, we first show how this
approach can enhance the manifold recovery for synthetic data. We then evaluate our method in two
domains using the ChEMBL dataset and the polymer datasets [St. John et al., 2019]. In both settings,
the 2-Stage VAE approach is able to enhance the property statistics of the generated molecule set by
bringing them closer in distribution to the training set.

2 Related Work
We structure our discussing based on the type of molecular representation underlying the indi-
vidual methods. Most current approaches fall into one of the following families – namely, the
SMILES strings approach, the molecular graph approach and the 3D point set approach. Many ap-
proaches have been proposed to generate molecules as SMILES strings [Segler et al., 2018, Gómez-
Bombarelli et al., 2018]. Kusner et al. [2017], Dai et al. [2018] took advantage of the syntax of
the SMILES strings to constrain the output of the VAE model in order to improve validity of the
generated molecules. Other approaches to generate SMILES strings include generative adversarial
model [Kadurin et al., 2017, Prykhodko et al., 2019, Guimaraes et al., 2017]. Molecular graphs
carry more information about the molecular structures than the SMILES string format and GNN can
effectively incorporate the additional information into the learning process [Duvenaud et al., 2015,
Liu et al., 2018]. Jin et al. [2018] proposed to generate molecular graph in two steps – generate the
tree-structured scaffolds first, and then combine with the substructures to form molecules. Jin et al.
[2020a] improved upon this prior result and proposed to generate via substructures in a course-to-
fine manner to adapt to bigger molecules, such as polymers. Satorras et al. [2021] introduced an
equivariant graph neural network to apply on molecular graphs. 3D representations of molecules are
gaining traction in the research communities as they provide additional spatial information of the
molecules [Gebauer et al., 2019, 2022, Luo et al., 2021, Hoogeboom et al., 2022]. However, none of
the methods use the VAE framework. Our paper is limited to improving the VAE approaches. Other
generative approaches to drug discovery include generative adversarial model [Kadurin et al., 2017,
Prykhodko et al., 2019, Guimaraes et al., 2017] and diffusion models [Hoogeboom et al., 2022, Xu
et al., 2022].

3 Method
The VAE famework [Kingma and Welling, 2013] has enabled great success in the image generation
domain and more recently VAE based approaches have become a popular approach for addressing
the molecule generation problem. Many sophisticated architectures have been proposed to adapt
the VAE approach to molecular data [Kusner et al., 2017, Dai et al., 2018, Jin et al., 2019, Sator-
ras et al., 2021]. However, adapting the underlying neural architecture does not remedy VAE’s
learning deficiency in manifold recovery [Dai and Wipf, 2019, Koehler et al., 2021]. In the case of
high-dimensional data that lies on low-dimensional manifold such as images and molecular repre-
sentations, Koehler et al. [2021] found that the VAE is not guaranteed to recover the manifold where
the nonlinear data lie. The 2-stage method can improve manifold recovery as demonstrated in a
synthetic experiment (Figure 2) and further enhance the performance of a pre-existing model.

3.1 Variational Autoencoder
The variational inference framework assumes that the data x is generated from a latent vari-
able z ∼ p(z). The prior p(z) is assumed to be a multivariate standard normal distribution in

2



(a) Stage 1 (b) Stage 2 (c) Stage 3

Figure 2: Multi-stage VAE on synthetic data. The x-axis represents the norm of the data point
and the y-axis represents the number of data points that are of x distance away from the unit sphere
center. The figures across different stages of VAE training shows that the sphere surface is eventually
recovered and improved starting from stage 2.

the application of a VAE. A VAE model seeks to maximize the likelihood of the data, denoted
as log pθ(x) = log

∫
p(z)pθ(x|z)dz where θ denotes the generative parameters. However, the

marginalization is intractable in practice due to the inherent complexity of the generator, or the
decoder, thus an approximation of the objective is needed. Let ϕ be the variational parameters, the
VAE model consists of a tractable encoder qϕ(z|x) and a decoder pθ(x|z). Together, they approxi-
mate a lower bound to the log likelihood of the data. Ideally, by optimizing this lower bound we aim
to increase the likelihood. This approximation enables the efficient posterior inference of the latent
variable z given the output xi and for marginal inference of the output variable x. The objective
function of VAE is:

L(θ, ϕ;x) = −DKL(qϕ(z|x) || p(z)) + Eqϕ(z|x)[log pθ(x|z)] ≤ log pθ(x) (1)

For generation, latent variable zi is sampled from the prior p(z) which is a multivariate standard
normal and the decoder transforms zi into the output xi.

3.2 2-Stage VAE
Despite its widespread use, VAE in its original form has many known flaws. Particularly, in the case
where the data lies on low-dimensional manifold embedded in a high-dimensional ambient space.
Dai and Wipf [2019] hypothesized that training a VAE with a fixed decoder variance could add
additional noise to the output, while training with tunable decoder variance, the decoder variance has
a tendency approach zero and the model will learn the correct manifold but not the correct density.
In practice this can lead to low-quality output images in comparison to models such as GANs. The
implications of the finding extends to molecular data as well. Subsequently, Dai and Wipf [2019]
proposed a 2-stage VAE approach to enhance the manifold and density recovery of existing VAE
approaches. The reasoning was that the first stage VAE with tunable decoder variance learns the
low-dimensional manifold the data lies on as the decoder variance goes to zero and the probability
mass collapses onto the correct low-dimensional manifold. The second stage VAE is constructed
with its latent dimension equal to the output dimension and is theorized to recover the density when
the ambient dimension is equal to the intrinsic dimension. Their algorithm visibly improved the
appearance of the generated images but the claim of manifold or density recovery cannot be easily
verified with image data.

Koehler et al. [2021] showed empirically and analytically that when the data is a nonlinear function
of the latent variables, neither the manifold nor the density is guaranteed to be recovered by the
first stage VAE. This could provide an explanation as to why the generated molecules from the
VAE are dissimilar in properties to the training datset. Even though this conclusion rendered the
reasoning behind a 2-stage VAE invalid, the algorithm itself is not without merits. As we will
demonstrate in the following synthetic experiment, a 2-stage VAE can improve manifold recovery.
This could significantly improve the properties of the generated molecules as we will demonstrate
in the experiments.

Synthetic Experiment We show that a 2-stage VAE setup improves the recovery of the manifold.
We demonstrate this in a synthetic experiment with data generated from a ground-truth manifold (see
Figure 2). We generate data from a 2-dimensional unit sphere (the norms of all the generated data
points are 1). The 3-dimensional vectors are then padded with 16 dimensions of zeros to embed the
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data in a higher ambient space. In this case, the intrinsic dimension of the data is 2 and the ambient
dimension is 17. We trained on this data in 3 stages – meaning, the latents from the previous stage
are used for training in the next stage. For the second and the third stage VAE, the latent dimension
is set to be the same as their input (Figure 1). The decoder variance is tunable for all stages and the
decoder variance of the first stage approaches 0 upon convergence. During sampling, the output of
the later stage VAE’s becomes the latent of the previous stage VAE. The last-stage VAE’s latents are
sampled from standard normal distribution. We sample 1000 data points to visualize the results in
the histograms. They show that the VAE in the first stage does not recover the manifold and many
of the generated data points fall inside of the sphere, echoing the finding by Koehler et al. [2021]. In
the second and third stage, we see that more data points fall on the sphere, indicating the recovery
of the manifold.

Application on Molecule Generation How improving manifold recovery of the generative model
would benefit molecule generations does not have a straightforward answer. Evaluation metrics on
molecule generation are multifaceted. Validity alone provides only a shallow examination on the
quality of the generated molecules and other property metrics need to be considered to evaluate the
generated molecules for real world applications. We provide empirical studies in the experiment
section to study the suitability of a 2-stage VAE approach in the molecule generation domain by
providing evaluation results on sample quality, structural as well as property statistics [Polykovskiy
et al., 2020]. We found that the 2-stage VAE helps to generate molecules that are more similar in
properties to the ones in the training dataset. We present the precise steps to train a 2-stage VAE
[Dai and Wipf, 2019]:

1. Train a VAE on the molecular dataset {xi|i = 1, 2, . . . n} with architectures of your choice.
Upon convergence, save the latent vectors vi ∼ qϕ(v|xi), for all the molecules in the
dataset. The tunable decoder covariance requirements are satisfied with decoders that fol-
low multinomial distribution such as in molecule generations, the decoder variance ap-
proaching zero is equivalent to the probability mass concentrating on one choice;

2. With vi’s as input, train the second stage VAE with tunable decoder variance. We denote
the latent of the second stage VAE as z. In this paper, we use feed-forward architectures
for both the decoder pθ′ (v|z) and the encoder qϕ′(z|v). The dimension of v is equal to the
dimension z for maximum power.

3. During the generation process, sample the latent of the last stage VAE by z ∼ N (0, I).
Obtain the output from the second stage decoder vi ∼ pθ′ (v|z) as the latent for the first
stage VAE. And get the molecule sample x from the first stage decoder via x ∼ pθ(x|v).

One way to interpret this method is that while the first-stage VAE learns a mapping between the latent
representations and the molecular data, the second-stage VAE learns to generate latent variables from
the distribution of the latent representations of the dataset.

4 Experiments
In this section, we explore in detail how the 2-stage VAE improves the generated molecules. We
adopt two model architectures – hierarchical GNN and character-level RNN – to compare the out-
comes of a 2-stage and 3-stage VAE on different model architectures. We adopt a GAN-based model
as an additional comparison. We conducted experiments on two molecule datasets – ChEMBL
[Mendez et al., 2019] and polymers [St. John et al., 2019] for a comprehensive study of the method.

We introduce the two datasets used in the experiments – ChEMBL dataset Mendez et al. [2019] and
polymers dataset St. John et al. [2019]. Details on our benchmark metrics are in Appendix B

• ChEMBL Dataset[Mendez et al., 2019] consists of 1,799,433 bioactive molecules with
drug-like properties. It is split into training, testing, validation, test scaffold and valida-
tion scaffold dataset containing 1,463,775, 81,321, 8,321, 86,508 and 86,507 molecules
respectively.

• The Polymer Dataset[St. John et al., 2019] contains 86,353 polymers and it’s divided into
training, test and validation set that contains 76,353, 5000 and 5000 molecules each. There
is no scaffold split for the polymers dataset. Polymers generally have heavier weight than
the molecules in the ChEMBL dataset and the dataset size is smaller.
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We use hierearchical GNN (HGNN) [Jin et al., 2019] and vanilla RNN (RNN) [Polykovskiy et al.,
2020] as the first stage VAE and a GAN-based model, latent GAN [Prykhodko et al., 2019], as
baseline:

Sample Quality Structural Statistics Property Statistics
Stage # Valid ↑ Unique ↑ Novelty ↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓

HGNN#1 1.0 1.0 0.99 5.1 0.42 0.97 0.46 0.920.016 0.0704.3e−3 0.0249.5e−4 68.80.83
HGNN#2 1.0 1.0 0.99 1.1 0.41 1.0 0.43 0.0950.019 0.0695.8e−3 0.00671.0e−3 5.00.72
HGNN#3 1.0 1.0 1.0 1.2 0.41 1.0 0.46 0.0594.5e−3 0.0696.3e−3 0.0161.6e−3 7.70.42
RNN#1 0.86 1.0 1.0 1.84 0.38 1.0 0.38 0.0887.8e−3 0.257.8e−3 0.00881.6e−3 3.20.55
RNN#2 0.87 1.0 1.0 1.86 0.38 1.0 0.36 0.0995.5e−3 0.277.7e−3 0.00991.5e−3 2.80.29

LatentGan 0.77 0.98 0.99 17.3 0.34 0.68 0.21 0.690.019 0.637.3e−3 0.0472.0e−3 27.20.88

Table 1: Properties of the generated molecules trained on the ChEMBL dataset.

Sample Quality Structural Statistics Property Statistics
Stage # Valid ↑ Unique ↑ Novelty ↑ FCD ↓ SNN ↑ Frag ↑ Scaf ↑ LogP ↓ SA ↓ QED ↓ MW ↓

HGNN#1 1.0 1.0 0.57 0.62 0.67 0.98 0.37 1.30.030 0.0893.0e−3 0.0201.2e−3 72.21.42

HGNN#2 1.0 1.0 0.51 0.27 0.69 0.99 0.37 0.100.033 0.0313.3e−3 0.00419.5e−4 7.71.1

HGNN#3 1.0 1.0 0.52 0.29 0.69 0.99 0.38 0.240.017 0.0244.1e−3 0.00242.9e−4 9.42.3

RNN#1 0.53 0.99 0.13 1.6 0.69 0.87 0.50 2.60.011 0.319.2e−3 0.0479.4e−4 178.41.2

RNN#2 0.53 1.0 0.13 1.5 0.69 0.87 0.51 2.50.011 0.313.2e−3 0.0446.9e−4 176.10.68

LatentGan 0.94 1.0 0.82 0.51 0.66 0.99 0.33 0.260.031 0.0413.3e−3 0.00294.37e−4 11.81.7

Table 2: Properties of the generated molecules trained on the polymers dataset.

We sampled 10,000 molecules from each model to generate the results in Table 1 and Table 2. We
included sample quality, structural and property statistics. The numbers in the tables are averaged
over 6 sets of samples generated with 6 different random seeds from the model. We included the
standard deviations for the property statistics but eliminated the rest as those are below 0.01.

On both datasets, the HGNN#2 improves upon the first stage by many folds on property statistics.
The most notable improvement from the ChEMBL dataset is the QED (from 0.024 to 0.0067), MW
(from 68.8 to 5.0) and LogP (0.92 to 0.059). On the polymer dataset, the second stage VAE improves
significantly across all metrics – from 72.2 to 7.7 on MW, 0.020 to 0.0024 on QED, 0.089 to 0.031 on
SA and 1.3 to 0.1 on LogP. A lower value on these statistics for the molecules generated through two
stages signals that they are much more similar to the test set on these properties. Structural statistics
generally did not change a lot throughout the 2-stage and 3-stage training. The performance on these
metrics of the later stages models may be bottle-necked by the first-stage graph decoder. We also re-
peat the second-stage VAE to perform the third-stage. However, there is no consistent improvement
from the second stage across the board as seen in Table 1 and Table 2. This is also in line with our
synthetic experiment demonstrated in Figure 2, where the second and the third stage of VAE train-
ing made no substantial improvement in manifold recovery compared to the improvements from the
first stage to the second stage. Overall, the second stage VAE to the HGNN model outperforms both
stages of RNN VAE and the latentGAN on majority of the evaluation metrics of both datasets.

The second stage to the RNN model does not provide significantly improvement on either datasets.
The RNN VAE performs particularly poorly on the the polymer dataset as only half of the molecules
the model generates are valid. This may be because that the RNN architecture is sensitive to the
amount of data used for training. The polymer dataset is smaller than the ChEMBL dataset while
polymers generally contain more atoms. This could negative impact RNN’s performance. The
second stage VAE slightly improves upon the first stage on the polymer datasets. On ChEMBL
dataset, the second stage VAE does not have consistent improvement on any metrics. Our hypothesis
for the poor performance of the 2-stage VAE with this RNN model as the first stage model is that the
variance of the first stage decoder did not fulfill the condition of approaching 0 upon convergence.
We will investigate the underlying reasoning behind this behavior for our future work.

5 Discussion
Manifold recovery is a challenge for VAE methods that train on data that lie on a low-dimensional
manifold embedded in a higher-dimensional ambient space. In this paper, we presented a 2-stage
VAE method that improves manifold recovery as demonstrated in a synthetic experiment. In ex-
periments with molecular data such as ChEMBL and polymers, the method significantly improve
the property statistics of a pre-existing VAE method and brings the generated molecules closer to
the training dataset in property distributions. The nature of our approach makes it applicable to a
wide range of other VAE based molecule generation methods. In future work we want to extend the
method further to successfully adapt to more types of VAE architectures.
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A Information on the Models Used for Experiments

We chose one graph neural network based VAE and one RNN based VAE for diversity. We chose
latentGAN as a non-VAE method for baseline.

Hierarchical GNN[Jin et al., 2019]: The proposed method first extracts chemically valid motifs,
or substructures, from the molecular graph such that the union of these motifs covers the entire
molecule. The model consists of a fine-to-coarse encoder that encodes from atoms to motifs and a
coarse-to-fine decoder that selects motifs to create the molecule while deciding the attachment point
between the motif and the emerging molecule. We used the configuration from the orginal model.
The latent size of the VAE is 32 and we used 0.1 as the KL coefficient.

Vanilla RNN[Polykovskiy et al., 2020]: The inputs to the model are SMILES strings and the vo-
cabulary consists of the low-level symbols in the SMILES strings. The encoder is a 1-layer GRU
and the decoder is a 3-layer GRU. The latent size of the VAE is 128. We used most of the original
configuration except the KL coefficient.

Latent GAN [Prykhodko et al., 2019] is also a 2-stage method. The first stage is heteroencoder
that takes SMILES strings as input while the second stage is a Wasserstein GAN with gradient
penalty (WGAN-GP) that trains on the latents of the first stage VAE. The heteroencoder consists
of an encoder and a decoder like an autoencoder and is trained with categorical cross-entropy loss.
Afterwards, the GAN is trained to generate latent vectors for the decoder from the heteroencoder.
We used the original parameters for training.

B Benchmark Metrics

Property Statistics includes LogP (The Octanol-Water Partition Coefficient), SA (Synthetic Accessi-
bility Score), QED (Quantitative Estimation of Drug-Likeness) and MW (Molecular Weight). These
metrics determines the practicality of the generated molecules, for example, LogP measures the sol-
ubility of the molecules in water or an organic solvent [Wildman and Crippen, 1999], SA estimates
how easily the molecules can be synthesized based on molecule structures [Ertl and Schuffenhauer,
2009], QED estimates how likely it can be a viable candidate of drugs [Bickerton et al., 2012]. The
values listed in the table for each metric is the Wasserstein distance between the distribution of the
property statistics in the test set and the generate molecule set.

Structural statistics includes SNN (Similarity to Nearest Neighbor), Frag (Fragment Similarity), and
Scaf (Scaffold Similarity). These statistics calculate two molecular datasets’ structural similarity
based on their extended-connectivity fingerprints [Rogers and Hahn, 2010], BRICS fragments [De-
gen et al., 2008] and Bemis–Murcko scaffolds [Bemis and Murcko, 1996].

The sample quality metrics are a lot more intuitive. Valid calculates the percentage of valid molecule
outputs. Unique calculates the percentage of unique molecules in the first k molecules where
k = 1000 for the ChEMBL dataset and k = 500 for the polymer dataset. Novelty calculates
the percentage of molecules generated that are not present in the training set. FCD is the Fréchet
ChemNet Distance [Preuer et al., 2018].
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