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Abstract

Signal peptides are essential for protein sorting and processing. Evaluating signal
peptides experimentally is difficult and prone to errors, therefore the exact cleavage
sites are often misannotated. Here, we describe a novel explainable method to
identify signal peptides and predict the cleavage site, with a performance similar
to state-of-the art methods. We treat each amino acid sequence as a sentence and
its annotation as a translation problem. We utilise attention neural networks in
a transformer model using a simple one-hot representation of each amino acid,
without including any evolutionary information. By analysing the encoder-decoder
attention of the trained network, we are able to explain what information in the
peptide is used to annotate the cleavage site. We find the most common signal
peptide motifs and characteristics and confirm that the most informative amino acid
sites vary greatly between kingdoms and signal peptide types as previous studies
have shown. Our findings open up the possibility to gain biological insight using
transformer neural networks on small sets of labelled information.

1 Introduction

Signal peptides (SPs) are found in Archaea (1), Eukarya (2) and Bacteria (3) and are important for
protein sorting and processing (4). Annotation of SPs is a two-fold problem, distinguishing between
presence or absence of SPs and determining the SP cleavage site (CS) (5). These problems have
proven to be difficult, in particular, finding the CS. The CSs arise from that signal peptidases (SPases)
remove SPs after they have fulfilled their function of e.g. assuring proteins are translocated across
membranes. The main pathway directing translocation is called the “general secretory pathway”
(Sec). Although, another pathway, only present in Archaea, Chloroplasts, Mitochondria and Bacteria,
called the twin-arginine translocation (Tat) pathway exists (6). The peptides in this pathway have
been found to have two consecutive arginines near the N-terminal, hence the name.

The most common SPase is SPase I and exists in Archaea, Eukarya and Bacteria for cleaving SPs in
the Sec pathway. In Bacteria, lipoproteins in the Sec pathway are cleaved by another SPase, SPase
II, which recognizes a special cysteine motif immediately after the CS (7). The Tat SPs are only
processed by either SPase I or II, although another SPase, SPase III, exists for cleavage of archaeal
and bacterial pilins in the Sec pathway (8). Peptides in the Sec pathway can thus be cleaved by SPase
I-III, while peptides in the Tat pathway can only be cleaved by SPase I or II.

Signal peptides have been found to be highly variable in sequence, although some motifs such as
the mentioned cysteine and twin-arginine exist. However, a tripartite structure consisting of a (1)
positively charged region near the N-terminal, (2) a span of 10-15 hydrophobic amino acids (AAs)
in the SP center and (3) more polar AAs with decreasing size towards the C-terminal, is a classical
characteristic (9; 10). Due to the presence of these characteristics, many methods have been developed
to predict SPs and CSs, the most recent and successful using deep learning (5). The best current
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method overall (although the performance is not the best for all SP/CS types) for predicting various
types of SPs and their CSs is SignalP 5.0 (11). SignalP 5.0 distinguishes SPs in the Sec pathway
cleaved by SPase I (Sec/SPI) or Spase II (Sec/SPII) and SPs in the Tat pathway cleaved by SPase
I (Tat/SPI). Eukaryotic SPs can only be predicted for Sec/SPI, while archaeal and bacterial can be
predicted for all types (Sec/SPI, Sec/SPII and Tat/SPI).

Here, we use a pure attention based language modelling approach to annotate SPs and CSs. We
translate the meaning of each amino acid into six different annotation categories: Sec/SPI signal
peptide, Tat/SPI signal peptide, Sec/SPII signal peptide, cytoplasm, transmembrane and extracellular.
Compared to other language models pre-trained on all proteins, to be fine-tuned in a later stage for a
certain task (12), our model is trained end-to-end with a more limited dataset. This enables the model
to learn specific aspects of the SP “language” and what it means in regards to SP and CS annotation,
similar to learning the semantics of a language, compared to just learning its grammar.

2 Methods

2.1 Data

To assess the performance of our network in comparison to the best available methods, we use the
same dataset as in SignalP 5.0 (11) for training, testing and benchmarking. Briefly, this set consists
of eukaryotic, archaeal and bacterial peptides from UniProtKB 2018_04 longer than 30 AAs (Table
S1). Only the first 70 N-terminal AAs were used for all peptides. If the peptides were shorter than 70
AAs, they were padded with the character “X”. For the signal peptides, the classes Sec/SPI, Tat/SPI
and Sec/SPII exist. The Eukaryotic proteins all belong to the class Sec/SPI, while the other kingdoms
have peptides in all classes. The negative set consists of globular and membrane proteins. Training,
testing and benchmarking of the model was performed exactly like in SignalP 5.0, using a nested
5-fold cross-validation procedure. The data was homology partitioned on 20% sequence identity,
which ensures low bias for the testing and benchmarking. Further, the nesting procedure ensures that
the models predicting for each fold during testing and benchmarking have not seen any of the data.

2.2 Network architecture

The network is a pure attention based transformer model (13) (Figure1), where the input AA sequence
of length 70 is transformed to an output annotation of length 70 consisting of six classes: Sec/SPI
signal peptide, Tat/SPI signal peptide, Sec/SPII signal peptide, cytoplasm, transmembrane and
extracellular. The input AA sequence is first embedded using token-position embeddings, which
are added together, in the encoder block. These embeddings are learned during training and passed
through attention layers consisting of multi-headed self-attention followed by skip-connection and
normalization, feed-forward layer with ReLU activation and again skip-connection and normalization.
The normalization transforms its input so a mean close to zero and standard deviation close to one are
maintained. After each attention and feed-forward layer, dropout with rate 0.1 is applied throughout
the network. N encoder blocks are applied before the information is passed to the decoder blocks.

To be able to assess the attention on the input sequence towards the output annotations, we pass a
random annotation tensor as input to the decoder block. This tensor is embedded with a separate
learned additive token-position embedding and passed through a multi-headed self-attention layer
followed by skip-connection and normalization, feed-forward layer with ReLU activation and again
skip-connection and normalization. The resulting tensors are joined with the encoded AA sequence
in the decoder to utilize the concept of encoder-decoder attention. There, the key and value consists
of the encoded AA sequence and the query of the multi-headed self-attention of the annotation
tensor. The output from encoder-decoder attention is subject to skip-connection and normalization,
feed-forward layer with ReLU activation and again skip-connection and normalization. N such
decoder blocks are applied, where all but the first one receive their input from the previous decoder
block and all receive keys and values from the N encoder blocks.

A softmax layer is applied on the decoder output, resulting in probabilities over the six different
annotation classes. The network can, therefore, iteratively modify the annotations and obtain feedback
on its decisions throughout the encoder-decoder attention. After iterating, a final decoder block,
followed by softmax activation is applied resulting in the predicted annotation output. The loss is
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calculated towards the true annotations across all six classes for all 70 positions in the annotation
output (see section 6.2 for further details).

Figure 1: Transformer network architecture [13]. The AA input sequence is passed through the N Encoder
blocks. The Random annotation input is passed through a multi-head attention layer in the decoder block and
then joined with the output from the encoder blocks in a encoder-decoder multi-head attention layer. The encoder
information acts as key (K) and value (V), while the multi-head attention of the annotation input as as query
(Q). All N decoder blocks receive the same K and V from the encoder blocks, but the Q are different as they
are decoded sequentially. After the N decoder blocks, a softmax layer is applied, allowing predictions of the 6
different annotation classes, which is then fed as input to the decoder again in an iterative fashion. Finally, a
decoder block is applied, resulting in the annotation output. The loss is calculated across all six classes towards
all 70 positions in the annotation output.

3 Results and Discussion

3.1 Attention focus

To analyse if the trained model has learned the common characteristics of SPs, we compare the
bit-information from the attention on AAs used to annotate the SP with the occurrence of the AAs
themselves, in the form of sequence logos. The peptides have been aligned at the CS, showing an area
of the median SP length before the CS and three AAs after the CS for each respective kingdom and
SP type (Figures 2 and S4, section 6.5). Only the TP CS predictions from the benchmark dataset are
displayed, ranging from 50-67% for Sec/SPI (Table S4), 91-94% (Sec/SPII) and 46-56% (Tat/SPI),
representing state-of-the-art performance (Figure S2). This means that the logos made, based on TP
type predictions, will also contain information for informing the CSs.

The attention sequence logos represent the conservation and thus importance of specific amino
acids at different positions relative to the cleavage site. However, the attention itself, regardless of
amino acid, represents the most important positions overall. Previously, mutational studies have
shown that residues -7 to -14 in prokaryotes and -6 to -13 in eukaryotes are the most important
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Figure 2: Attention and sequence logos for all Sec/SPI TP predictions in Archaea, Eukarya, Gram-negative and
Gram-positive bacteria ordered in the N→C direction. The CS has been marked with a dashed black line. An
area of the median SP length before the CS and three AAs after the CS is shown.

SP residues constituting a minimal hydrophobic region (14). These hydrophobic residues are the
major determinants for signal recognition by the Signal recognition particle (SRP). However, the
hydrophobic region is found not to be sufficient for this recognition alone, as positive charges act to
fine-tune the SRP-SP affinity and targeting to the translocon. (15; 16)

As can be seen for Sec/SPI (Figure 2), the known tripartite structure has been learned. Towards the
N-terminal, positive AAs obtain most attention, while the highly present alanines are disregarded.
Towards the middle, the classic hydrophobic patch appears (5-16 AAs long) [24], both in sequence
and attention logos. Right before the CS, motifs in positions -3 and -1 appear. The difference
between attention and sequence and attention logos is stark here, displaying strong AxA motifs in the
sequence and highly variable motifs in the attention logos. This suggests the network has learned the
highly variable structure of signal peptides [14,17], allowing the possibility of a small or a polar or
charged hydrophilic residue the same amount of attention. It is clear that the network has learned
the importance of these positions due to the relative sum of the information there being consistently
3-6 times higher than the lowest. This is also true for the hydrophobic patch, known to be of various
lengths and residues, as many different polar residues have high bit-information in the attention logos
regardless of their statistical signal in the sequence logos.

The main attention is towards the hydrophobic region in Sec/SPI (Figure S4). The variability between
kingdoms and range of attention focus reflects the known variability and length in the hydrophobic
patch recognized by the SRP. Due to the continuity in the focus, it is hard to determine precise areas
of focus for most kingdoms and types. For Sec/SPI, Archaea, the main attention focus ranges from -4
to -14, with the strongest focus on positions -7 and -9. In Eukarya, -6 to -17, with the strongest focus
on position -7. In Gram-negative bacteria, the focus is wide, stretching from -2 to -17 with strongest
focus on -2 and -7. In Gram-positive bacteria, the focus ranges from -7 to -16, with strong focus on
positions -7,-8,-10 to -14.

4 Conclusions

The results show that analysing the encoder-decoder attention towards the CS provides explainable
and meaningful biological insights. Calculating the bit-information in the attention matrix elucidates
the tripartite structure and -3,-1 (Sec/SPI), cysteine (Sec/SPII) and Tat (Tat/SPI) motifs. Analysing the
attention positional focus captures the most important SP residues constituting a minimal hydrophobic
region for SRP interaction and the importance of the cysteine and Tat motifs. The high variability of
SP sequences and lengths, especially of the important hydrophobic region, is also highlighted in the
attention logos and attention positional focus. In addition, we train a transformer that is completely
attention based, obtaining close to state-of-the-art performance.
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5 Broader Impact

Recently, the use of language models for different protein related applications has increased sub-
stantially. It has been demonstrated that language models can be used in an unsupervised manner
to learn protein features (12; 17) and for structure prediction (18) by pre-training on very large
datasets. However, none of these studies have investigated the possibility to train on small targeted
datasets in an end-to-end fashion. We show that it is possible to gain biological insights directly
from small sets of labeled data by constructing a transformer neural network and analysing the
encoder-decoder attention of this. It is possible that there exist unknown biological phenomena that
can be learned in a similar fashion at a relatively small cost. What the trained transformer learns is
highly dependent on the input data, why inherent biases in this will impact any conclusions drawn. It
is therefore paramount that any conclusions are checked experimentally so that wrong conclusions
are not propagated. We suggest this type of information extraction using neural networks should
rather aim to ease the human workload in analysing biological data and not replace it.
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6 Supplementary material

6.1 Data

Table S1: Composition of the training set used for the 5-fold cross-validation procedure and the
benchmark set in parentheses.

Type Archaea Eukaryotes Gram-negative bacteria Gram-positive bacteria

Sec/SPI 60 (50) 2614 (210) 509 (90) 189 (25)
Sec/SPII 28 (19) N.A. 1063 (442) 449 (201)
Tat/SPI 27 (22) N.A. 334 (98) 95 (74)
Globular 78 (63) 13612 (6929) 202 (103) 140 (64)
Membrane 44 (28) 1044 (318) 220 (50)6 50 (25)
Total 237 (182) 17270 (7457) 2328 (783) 923 (389)

6.2 Optimization

The network was constructed using tensorflow version 2.5. The same nested cross-validation procedure as in
SignalP(11) was used. Five homology partitions had been constructed on 20% sequence identity, using equal
portions. Leaving each of these partitions out for testing, we trained four models on all 3+1 combinations of
the remaining 4/5 of the data. For each validation run, we thus trained on 3/5 of the data and validated on 1/5.
We did this in all combinations, in total 5 test partitions times 4 validation partitions, equalling 20 models in
total. Using a grid-search approach, we optimised the following parameters in all combinations (in total 144
combinations):

embed dimensions = [16,32] (number of dimensions for embedding the amino acid and positions)

num heads = [1,2] (number of attention heads)

ff dim = [16,32] (number of dimensions in the feed-forward network)

num layers = [1,2,4] (number of transformer blocks)

batch sizes = [16,32] (batch size)

num iterations = [1,2,4] (number of iterations over the whole transformer)

All models were trained with a fixed learning rate of 0.001, using the Adam optimizer (19) with adagrad (20)
and exponential decay (10000 decay steps, decay rate of 0.96, staircase=True) for 100 epochs. For the loss
function we used focal loss (21) with γ = 2, a function where the misclassified examples are penalized, resulting
in the model focusing on harder classes (see equation (i)).

FL(pt) =−(1− pt)
γlog(pt) (i)

The best parameters on average over all four validation partitions, for each test partition, during the 100 epochs
were chosen (Figure S1 and table S2). Using these parameters, we retrained the models for 50 epochs, as the
models tended to overfit at this threshold, saving the ones with the best validation performance in these 50
epochs. The resulting 20 models were used for testing and benchmarking, using the average prediction of the
four models for each test and benchmark partition. The signal peptide type was taken as the highest occurring
signal annotation, if present. If no signal peptide annotation was present, the type was regarded as having no
signal peptide. The cleavage site was evaluated only if a signal peptide type was predicted and in such cases
taken as the last position of a signal annotation, starting from the N-terminal. A correct CS annotation was given
in a window of ±3 AA around the annotated CS, just like in SignalP 5.0(11), as the experimental data has high
variance.

6.3 Benchmark study

The transformer network does not outperform the best available methods (Figure S2). However, the results are
comparable to the top methods across almost all comparisons, in most cases differing only to a small fraction.
The highest performance is obtained for the Sec/SPII peptides and the lowest for Tat/SPI peptides. We note that
SignalP, which dataset we have used in this study is outperformed in some regards (Gram-negative bacteria CS

7



Figure S1: Optimisation results from the nested cross-validation for all five test partitions. The green
curves represent the average validation performance and the blue the average train-performance for
the four validation models for each parameter combination.

Table S2: The best parameter combinations over the validation for the five different test partitions.

embed_dim num_heads ff_dim num_layers batch_size num_iterations test_partition min_valid_loss

32 2 32 4 64 1 0 59
32 2 16 1 64 1 1 61
16 2 32 1 32 1 2 60
16 2 32 1 32 1 3 60
16 2 32 1 32 1 4 59
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precision and recall) by the TAT-type protein specific predictor PRED-TAT as well. The exact numbers in terms
of cleavage site recall and precision and detection MCC can be found in tables S3-S9.

Figure S2: Benchmarking results for all signal peptides in terms of detection MCC, CS recall and CS
precision. In the precision and recall, an error of ±3 positions have been allowed to handle potential
errors in the experimental CS annotation. Our method, TransPep, does not outperform any of the best
methods, although it is consistently among the top performing methods and equals these in many
cases. For Sec/SPII the performance is almost identical with the best performance and for Tat/SPI the
performance is worse in terms of CS recall and precision. For the exact numbers see tables S3-S9.

6.4 Encoder-Decoder attention

To see what information is used to make different decisions, we analysed the encoder-decoder attention of all
correctly predicted peptides in the benchmark dataset. The maximum across all attention heads were taken
for each position in the encoder-decoder attention matrix, resulting in a vector of 70x70 numbers for each
peptide-annotation pair. To see what information the network uses to predict each type, we analysed the attention
across the AA sequence towards an area of -25 to +3 amino acids around the true annotated cleavage sites and
±3 annotations, as well as the attention across the whole unaligned peptides. We build logos using the maximal
amino acid column attention across all TP predictions with the python package Logomaker [23]. We added a
pseudo probability of 0.0001 to the attention matrix to handle otherwise infinite negative logarithms. We also
create logos from the raw AA sequences for comparison. All logo comparisons are made using bit-information
(Shannon entropy).

6.5 Attention and sequence logos

For Eukarya, lysine (K) receives very high attention compared to its statistical signal in the -1 position in Sec/SPI.
Only 2 out of 159 TP CS sequences in the benchmark dataset have a K in the -1 position. These are (the bold
AAs represent the AAs used in the logos and the -1 K is underlined):

>A0A0F7YYX3|Conus victoriae (Queen Victoria cone)

MSSPLRMDVTFLLAAIAVTWVCGLKIGFPGFSTPPRSFIQHPKRTLCPEDCDIASPFKCEESPTCLRLFQ

>Q94K85|Arabidopsis thaliana (Mouse-ear cress)

9



MAVYNTKLCLASVFLLLGLLLAFDLKGIEAESLTKQKLDSKILQDEIVKKVNENPNAGWKAAINDRFSNA

Interestingly, these are both in plants and have SPs that are 3 (25 AAs) resp 4 residues (26 AAs) longer than the
median Sec/SPI SP (22 AAs) in Eukarya. This is within one standard deviation (4.9 AAs), suggesting that it is
the plant type itself and not the length of the SP that is important for the high attention. That these would both
be in plants and the K not having a biological function is highly unlikely, as only 16/210 (7.6%, 171 Metazoa,
20 Fungi, 3 unclassified) of the Sec/SPI SPs are in plants.

Figure S3 displays the same comparison as for Sec/SPI in Figure 2 for Sec/SPII and Tat/SPI. Again, the tripartite
structure and disregard for N-terminal alanines manifests itself. The Tat signals (R-R) are learned and given much
attention for the Tat/SPI SPs. Both negatively and positively charged amino acids are given importance towards
the N-terminal, suggesting the importance of the charge and hydrophilicity itself. The charged/hydrophilic
N-terminal region is less present for Sec/SPII in Bacteria, where the +1 cysteine motif [7] is given almost all
attention both in attention and sequence logos. The network has learned to provide more even attention to the
-1 residues, showing the importance and variability of AAs in that position and disregard for statistical bias.
Showing similar information for G,S,A and I in Gram-negative bacteria and towards G,S and A in Gram-positive
enables the network to find the CS despite the variation. Just as for Sec/SPI, the network gives similar attention
to a variation of residues for the -1,-3 motif in Tat/SPI, avoiding the strong statistical alanine bias. The -1,-3
motif seems much less important for Archaea though, especially the -1 signal is barely visible in both sequence
and attention logos, where a strong hydrophobic patch obtains most information instead.

In the Tat/SPI SPs, the -1 arginine (R) and lysine (K) obtain much attention, compared to their statistical signals
in the sequence logos. For R, his may be due to the importance of the R-R motif for recognition.

Figure S3: Attention and sequence logos for all Sec/SPII and Tat/SPI TP predictions in Archaea,
Gram-negative and Gram-positive bacteria ordered in the N→C direction. The CS has been marked
with a dashed black line. An area of the median SP length before the CS and three AAs after the CS
is shown.
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6.6 Attention focus

For Sec/SPII and Tat/SPI (Figure S5) as compared to Sec/SPI (Figure S4), the focus is entirely different as these
types are more motif-driven with the highly conserved cysteine and R-R motifs. Due to almost all attention
being towards the +1 cysteine motif in Sec/SPII, the attention towards the hydrophobic patch is harder to spot.
In Eukarya, this focus is wide with the strongest signal towards -2 to -10. In both Gram-positive bacteria the
focus is towards -3 to -15 and in Gram-negative bacteria -3 to -18. For Tat/SPI, the focus varies between the
hydrophobic patch and the C-terminal where the R-R motif is to be found. In bacteria, there is also much focus
on position -2, while there is no such focus in Archaea.

Figure S4: The average attention focus per position (matrix) and sum (bar chart) for all TP CS
predictions in Sec/SPI.
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Figure S5: The average attention focus per position (matrix) and sum (bar chart) for all TP CS
predictions in Sec/SPII and Tat/SPI.
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6.7 Tables for the benchmark study

Table S3: Sec/SPI detection MCC

Method Archaea Eukaryotes Gram-negative bacteria Gram-positive bacteria

SignalP 5.0 0.917 0.883 0.83 0.76
SignalP 4.1 n.d 0.808 0.248 0.148
DeepSig n.d 0.819 0.166 0.115
LipoP 0.604 0.363 0.483 0.403
Philius 0.447 0.421 0.127 0.075
Phobius 0.514 0.51 0.132 0.074
PolyPhobius 0.453 0.456 0.144 0.111
PrediSi n.d. 0.553 0.244 0.121
PRED-LIPO 0.586 0.234 0.398 0.41
PRED-SIGNAL 0.584 0.272 0.098 0.114
PRED-TAT 0.626 0.326 0.187 0.189
Signal-3L 2.0 n.d. 0.597 0.11 0.106
Signal-CF n.d. 0.326 0.106 0.084
SOSUIsignal n.d. 0.375 0.108 0.047
SPEPlip n.d. 0.655 0.498 0.35
SCOPTOCUS 0.408 0.492 0.127 0.1
TOPCONS2 0.432 0.477 0.131 0.071
TransPep 0.855 0.81 0.737 0.661
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Table S4: Sec/SPI CS recall. The 0,±1,±2,±3 columns indicate the allowed error in CS annotation.

Method Archaea Eukaryotes
0 ±1 ±2 ±3 0 ±1 ±2 ±3

SignalP 5.0 0.66 0.74 0.78 0.82 0.729 0.762 0.795 0.833
SignalP 4.1 n.d. n.d. n.d. n.d. 0.695 0.729 0.762 0.786
DeepSig n.d. n.d. n.d. n.d. 0.624 0.652 0.69 0.724
LipoP 0.48 0.62 0.66 0.72 0.343 0.386 0.419 0.448
Philius 0.58 0.68 0.8 0.7 0.619 0.686 0.743 0.781
Phobius 0.54 0.64 0.66 0.7 0.667 0.7 0.738 0.786
PolyPhobius 0.56 0.68 0.68 0.7 0.681 0.733 0.776 0.833
PrediSi n.d. n.d. n.d. n.d. 0.652 0.695 0.719 0.767
PRED-LIPO 0.48 0.6 0.66 0.68 0.095 0.114 0.152 0.181
PRED-SIGNAL 0.8 0.9 0.9 0.9 0.224 0.29 0.329 0.362
PRED-TAT 0.58 0.72 0.0 0.82 0.41 0.51 0.571 0.614
Signal-3L 2.0 n.d. n.d. n.d. n.d. 0.648 0.686 0.733 0.762
Signal-CF n.d. n.d. n.d. n.d. 0.652 0.676 0.724 0.762
SOSUIsignal n.d. n.d. n.d. n.d. 0.176 0.329 0.467 0.576
SPEPlip n.d. n.d. n.d. n.d. 0.71 0.733 0.771 0.81
SCOPTOCUS 0.34 0.48 0.52 0.56 0.39 0.533 0.686 0.757
TOPCONS2 0.48 0.6 0.62 0.64 0.371 0.505 0.638 0.729
TransPep 0.26 0.52 0.7 0.74 0.252 0.467 0.686 0.757
Method Gram-negative bacteria Gram-positive bacteria

0 ±1 ±2 ±3 0 ±1 ±2 ±3

SignalP 5.0 0.66 0.74 0.78 0.82 0.729 0.762 0.795 0.833
SignalP 4.1 n.d. n.d. n.d. n.d. 0.695 0.729 0.762 0.786
DeepSig n.d. n.d. n.d. n.d. 0.624 0.652 0.69 0.724
LipoP 0.48 0.62 0.66 0.72 0.343 0.386 0.419 0.448
Philius 0.58 0.68 0.8 0.7 0.619 0.686 0.743 0.781
Phobius 0.54 0.64 0.66 0.7 0.667 0.7 0.738 0.786
PolyPhobius 0.56 0.68 0.68 0.7 0.681 0.733 0.776 0.833
PrediSi n.d. n.d. n.d. n.d. 0.652 0.695 0.719 0.767
PRED-LIPO 0.48 0.6 0.66 0.68 0.095 0.114 0.152 0.181
PRED-SIGNAL 0.8 0.9 0.9 0.9 0.224 0.29 0.329 0.362
PRED-TAT 0.58 0.72 0.0 0.82 0.41 0.51 0.571 0.614
Signal-3L 2.0 n.d. n.d. n.d. n.d. 0.648 0.686 0.733 0.762
Signal-CF n.d. n.d. n.d. n.d. 0.652 0.676 0.724 0.762
SOSUIsignal n.d. n.d. n.d. n.d. 0.176 0.329 0.467 0.576
SPEPlip n.d. n.d. n.d. n.d. 0.71 0.733 0.771 0.81
SCOPTOCUS 0.34 0.48 0.52 0.56 0.39 0.533 0.686 0.757
TOPCONS2 0.48 0.6 0.62 0.64 0.371 0.505 0.638 0.729
TransPep 0.26 0.52 0.7 0.74 0.252 0.467 0.686 0.757
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Table S5: Sec/SPI CS precision. The 0,±1,±2,±3 columns indicate the allowed error in CS annotation.

Method Archaea Eukaryotes
0 ±1 ±2 ±3 0 ±1 ±2 ±3

SignalP 5.0 0.771 0.688 0.812 0.812 0.671 0.702 0.732 0.732
SignalP 4.1 n.d. n.d. n.d. n.d. 0.613 0.643 0.672 0.693
DeepSig n.d. n.d. n.d. n.d. 0.604 0.631 0.668 0.7
LipoP 0.484 0.375 0.516 0.562 0.159 0.178 0.194 0.207
Philius 0.425 0.362 0.438 0.438 0.151 0.168 0.182 0.191
Phobius 0.395 0.333 0.407 0.432 0.226 0.237 0.25 0.267
PolyPhobius 0.395 0.326 0.395 0.407 0.176 0.19 0.201 0.216
PrediSi n.d. n.d. n.d. n.d. 0.273 0.291 0.301 0.321
PRED-LIPO 0.455 0.364 0.5 0.515 0.069 0.083 0.11 0.131
PRED-SIGNAL 0.435 0.489 0.489 0.489 0.066 0.085 0.096 0.106
PRED-TAT 0.397 0.493 0.548 0.562 0.08 0.099 0.111 0.119
Signal-3L 2.0 n.d. n.d. n.d. n.d. 0.322 0.341 0.365 0.379
Signal-CF n.d. n.d. n.d. n.d. 0.105 0.109 0.117 0.123
SOSUIsignal n.d. n.d. n.d. n.d. 0.037 0.069 0.098 0.121
SPEPlip n.d. n.d. n.d. n.d. 0.366 0.378 0.398 0.418
SCOPTOCUS 0.207 0.293 0.317 0.341 0.12 0.164 0.211 0.233
TOPCONS2 0.293 0.366 0.378 0.39 0.107 0.146 0.184 0.21
TransPep 0.236 0.472 0.636 0.672 0.203 0.375 0.551 0.609
Method Gram-negative bacteria Gram-positive bacteria

0 ±1 ±2 ±3 0 ±1 ±2 ±3

SignalP 5.0 0.742 0.775 0.809 0.809 0.6 0.6 0.629 0.629
SignalP 4.1 0.151 0.167 0.172 0.175 0.083 0.083 0.083 0.083
DeepSig 0.131 0.144 0.146 0.148 0.073 0.073 0.08 0.08
LipoP 0.327 0.342 0.351 0.351 0.153 0.153 0.163 0.163
Philius 0.106 0.112 0.119 0.122 0.054 0.054 0.054 0.054
Phobius 0.098 0.11 0.12 0.124 0.054 0.054 0.054 0.054
PolyPhobius 0.097 0.11 0.122 0.124 0.06 0.06 0.063 0.063
PrediSi 0.144 0.157 0.162 0.164 0.062 0.062 74.0 0.078
PRED-LIPO 0.212 0.237 0.258 0.273 0.216 0.216 0.216 0.216
PRED-SIGNAL 0.076 0.089 0.106 0.11 0.06 0.06 0.064 0.064
PRED-TAT 0.125 0.135 0.141 0.145 0.082 0.082 0.087 0.087
Signal-3L 2.0 0.113 0.123 0.127 0.129 0.074 0.074 0.08 0.078
Signal-CF 0.102 0.105 0.11 0.115 0.059 0.059 0.065 0.065
SOSUIsignal 0.04 0.055 0.086 0.094 0.018 0.021 0.025 0.039
SPEPlip 0.276 0.307 0.327 0.332 0.187 0.187 0.198 0.198
SCOPTOCUS 0.067 0.098 0.119 0.124 0.056 0.066 0.07 0.077
TOPCONS2 0.081 0.093 0.11 0.115 0.022 0.029 0.036 0.039
TransPep 0.232 0.389 0.526 0.6 0.147 0.324 0.441 0.5

Table S6: Sec/SPII detection MCC.

Method Archaea Gram-negative bacteria Gram-positive bacteria

SignalP 5.0 0.91 0.946 0.923
LipoP 0.755 0.833 0.822
PRED-LIPO 0.743 0.707 0.775
SPEPlip n.d. 0.884 0.843
TransPep 0.878 0.938 0.907
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Table S7: Sec/SPII recall and precision. The 0,±1,±2,±3 columns indicate the allowed error in CS
annotation. G- and G+ are shortenings for Gram-negative and Gram-positive bacteria respectively.

Method Archaea G- G+
0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3

CS recall

SignalP 0.895 0.895 0.895 0.895 0.964 0.964 0.964 0.968 0.925 0.925 0.925 0.925
LipoP 0.684 0„684 0.737 0.737 0.86 0.86 0.86 0.862 0.831 0.831 0.831 0.831
PRED-LIPO 0.632 0.632 0.632 0.632 0.717 0.717 0.717 0.719 0.816 0.816 0.816 0.816
SPEPlip n.d. n.d. n.d. n.d. 0.912 0.912 0.914 0.914 0.876 0.876 0.876 0.876
TransPep 0.684 0.789 0.842 0.842 0.672 0.749 0.912 0.948 0.682 0.736 0.866 0.905
CS precision

SignalP 0.944 0.944 0.944 0.944 0.97 0.97 0.97 0.975 0.959 0.959 0.959 0.959
LipoP 0.765 0.765 0.824 0.824 0.969 0.969 0.969 0.972 0.944 0.944 0.944 0.944
PRED-LIPO 0.923 0.923 0.923 0.923 0.969 0.969 0.969 0.972 0.921 0.921 0.921 0.921
SPEPlip n.d. n.d. n.d. n.d. 0.969 0.969 0.971 0.971 0.936 0.936 0.936 0.936
TransPep 0.765 0.882 0.941 0.941 0.669 0.745 0.908 0.944 0.682 0.736 0.866 0.905

Table S8: Tat/SPI detection MCC.

Method Archaea Gram-negative bacteria Gram-positive bacteria

SignalP 5.0 0.948 0.965 0.889
PRED-TAT 0.948 0.948 0.853
TatP 0.667 0.689 0.68
TATFIND 0.902 0.91 0.8
TransPep 0.88 0.875 0.81

Table S9: Tat/SPI CS recall and CS precision. The 0,±1,±2,±3 columns indicate the allowed error in
CS annotation. G- and G+ are shortenings for Gram-negative and Gram-positive bacteria respectively.

Method Archaea G- G+
0 ±1 ±2 ±3 0 ±1 ±2 ±3 0 ±1 ±2 ±3

CS recall

SignalP 5.0 0.591 0.636 0.727 0.773 0.684 0.724 0.745 0.776 0.595 0.622 0.676 0.689
PRED-TAT 0.5 0.545 0.636 0.636 0.735 0.735 0.776 0.806 0.622 0.622 0.635 0.689
TatP 0.318 0.409 0.5 0.5 0.653 0.673 0.694 0.04 0.446 0.43 0.514 0.581
TATFIND n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
TransPep 0.227 0.364 0.5 0.636 0.204 0.388 0.5 0.582 0.122 0.257 0.351 0.405

CS precision

SignalP 5.0 0.591 0.636 0.727 0.727 0.698 0.74 0.76 0.76 0.698 0.73 0.794 0.794
PRED-TAT 0.5 0.545 0.636 0.636 0.713 0.733 0.752 0.782 0.59 0.59 0.603 0.654
TatP 0.269 0.346 0.423 0.423 0.427 0.44 0.453 0.46 0.355 0.376 0.409 0.462
TATFIND n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.
TransPep 0.2 0.302 0.44 0.56 0.192 0.365 0.471 0.548 0.136 0.288 0.394 0.455

Table S10: Precision for each SP type in all four kingdoms. The precision represents the fraction of
all positive types that are displayed in the attention and sequence logos from the benchmark dataset.

Type Archaea Eukaryotes Gram-negative bacteria Gram-positive bacteria

Sec/SPI 0.94 0.914 0.778 0.8
Tat/SPI 0.842 N.A. 0.918 0.797
Sec/SPII 0.955 N.A. 0.973 0.955
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