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Abstract

Three-dimensional structure prediction tools offer a rapid means to approximate
the topology of a protein structure for any protein sequence. Recent progress in
deep learning-based structure prediction has led to highly accurate predictions
that have recently been used to systematically predict 20 whole proteomes by
DeepMind’s AlphaFold and the EMBL-EBI. While highly convenient, structure
prediction tools lack much of the functional context presented by experimental
studies, such as binding sites or post-translational modifications. Here, we introduce
a machine learning framework to rapidly model any residue-based classification
using AlphaFold2 structure-augmented protein representations. Specifically, graphs
describing the 3D structure of each protein in the AlphaFold2 human proteome
are generated and used as input representations to a Graph Convolutional Network
(GCN), which annotates specific regions of interest based on the structural attributes
of the amino acid residues, including their local neighbors. We demonstrate the
approach using six varied amino acid classification tasks.

1 Introduction

The introduction of deep learning to three-dimensional (3D) protein structure prediction problems
has led to a sudden leap in predictive performance as reported in the 2020 protein structure prediction
competition, CASP14 (1; 2; 3). Reliable structure prediction can be applied at scale to model full
proteomes. In July 2021, DeepMind and the EMBL-EBI announced a partnership aimed at modeling
the 3D structures of 100 million sequenced proteins, including an initial release of 20 complete
proteomes, including humans (4; 5). In contrast, protein structures determined by experimental means
can take months to years to solve. As of September 18th, 2021 the Protein DataBank (PDB) lists
182,176 experimentally determined protein structures (6). Expanding the scope of high-accuracy
structure models beyond homology-based approaches could enable functional characterization and
drug design applications for countless new systems on demand. For instance, emerging pathogens
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could be targeted for pharmaceutical research programs very rapidly. Typically, genomic sequences
of new pathogens are available within weeks of new outbreaks and reliable predicted structure models
are rapidly generated through online servers shortly thereafter. Following publication of the novel
coronavirus genome in January 2020, reliable 3D protein structure models for the novel coronavirus
proteins were automatically generated within days by the top modelling groups globally, including
SwissModel (7; 8), ZhangLab (9; 10), AlphaFold (11), and Rosetta (12).

Despite the large recent gains in structure prediction accuracy, using predicted structures effectively
for pharmaceutical applications remains a challenge. Modeled protein structures lack valuable
structural annotations which are often available through experimental means, such as ligand binding
sites, post translational modifications, macromolecular binding surfaces, metal binding sites, solvent
binding sites, etc. An automated framework to reliably predict druggable surfaces, surfaces likely to
be buried by protein interactions, or other specific regions of functional interest will accelerate future
rapid-response structure-based drug design and/or repurposing efforts.

This paper proposes a deep learning model that annotates 3D protein structures with predicted
ligand-, DNA-, RNA-, peptide-, or protein- binding sites using Graph Convolutional Networks
(GCN). It is a generalized framework to perform any arbitrary protein’s amino acid residue (AAR)
classification task, using the AlphaFold2 predicted 3D structure representation of a protein and a
GCN model. GCNs, which have seen a considerable interest in the last few years, are applicable to
the wide range of prediction problems with structure models in different domains including biology
(13; 14; 15; 16; 17), chemistry (18; 19), physics (20; 21), natural language processing (22; 23), and
social sciences (24; 25; 26). As proteins perform their function through a complex network of AARs,
the network structure can naturally be modeled as graphs (27). The graph-based convolutional neural
networks are more efficient compared with Convolutional Neural Networks (CNNs) for protein
graph-based data representation, especially when working with large-scale datasets as computational
cost and memory requirements are relatively insignificant (27).

The GCN technique proposed here is a unified framework that readily models any residue-based
dataset and has the flexibility of being rapidly deployed to multiple new problems for predicting
any residue-based annotations. While these specific predictions are not new, they are typically
performed by individual expert-designed technologies for each separate task, such as reported studies
in (28; 29; 30; 31; 32; 33; 34). Modeling multiple tasks with a single, unified framework allows
them to simultaneously benefit in parallel from subsequent iterative improvements, such as improved
features, model architectures, or innovations in test/train splits. Moreover, unlike predictive engines
based on primary sequence alone, the proposed graph-based methodology introduces spatial and
local environment context to all predictions, without compromising the scope of the model as a
consequence of poor structural coverage of proteins in the dataset.

2 Methodology

Proteins are chains of amino acid residues that fold into a 3D structure that gives them their
biochemical functions. The goal of the proposed unified GCN framework is to accept an input
protein structure exclusively made up of residue coordinates and annotate specific regions of interest
based on the structural attributes of the residue itself and its local neighbors. Fig. 1 provides a
schematic representation of the unified GCN framework architecture for residue characterization on
AlphaFold2 protein structures as the network input. In the following sections we explain the details
of graph data preparation and the GCN framework.

2.1 Graph Representation of Proteins

Protein residue graphs are constructed from each predicted protein structure in the AlphaFold2 human
proteome, where nodes correspond to individual residues and edges correspond to inter-residue
contacts within pre-set distances.

Constructing Node Features The node features represent the known properties of the residue.
Residues (nodes) are annotated with 26 features derived directly from the 3D structure model file,
including amino acid (20 features via one-hot encoding), backbone angles (phi, psi, tau, and theta),
solvent accessibility of the residue’s backbone atoms and solvent accessibility of the residue’s side
chain atoms. PDB file processing and SASA calculations are performed by Biopython (35; 36)
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Figure 1: Schematic representation of GCN framework to embed representation of an AlphaFold2
predicted protein structure and perform residue classification tasks.

and FreeSASA (37) respectively. Features are intentionally restricted to residue properties derived
exclusively from the structure file to ensure that the GCN model can be applied to future protein
structures with a single model file input. Moreover, only structure files derived from the AlphaFold2
database are used for training to avoid source bias.

Constructing Edge Features The neighborhood of a node used in the convolution operator is
the set of closest residues as determined by the threshold distance between their c-alpha atoms,
considered as the center of the residues. The spatial relationships between residues are represented as
features of the edges that connect them. The weighted edge features calculated as the inverse of the
square of euclidean distance are found to have significant impact on improving the GCN performance.

Constructing Residue Annotations (Prediction Targets) Residue annotations used as training
labels and corresponding to prediction targets can be obtained from any residue-based dataset,
mappable to the reference sequences, even if they are not derived from structural studies. For instance,
UniProt annotations for ‘modified residues’ corresponding to post-translational modifications often
originate from mass-spectroscopy studies that do not involve solved 3D structure. To demonstrate
the utility of this method, we build models for multiple different residue annotations from UniProt
including post-translational modifications derived from functional studies, as well as binding site
annotations from BioLip, which indexes observed binding sites from macromolecular structures in
the PDB (38). Small molecule ligands, nucleic acid, peptide, and inorganic molecule binding sites
from BioLip are mapped onto UniProt sequences then used as classification labels. Models lacking
any binding annotations are not used for training, as to prevent excessive false negative labels from
biasing the dataset.

2.2 Graph Convolutional Network

The GCN model is built using the PyTorch Geometric library (39) to predict labels (annotations)
of each node (residue) in the protein graphs. The GCN prediction process is conducted through
exploitation of structure features of the target residue and its neighbors in the protein graph. It is
performed by applying multiple graph convolutional blocks of different sizes which are connected by
ELU activation function (40). The convolutional block in the output layer is followed by a final block
of log softmax function (41), which calculates the logarithmic probability of the target of interest
being a positive label, after a 50% dropout is applied to prevent overfitting. For the results presented
in Section 4, the GCNConv convolutional operator is used (42). The Adam optimizer with learning
rate of 0.01 is chosen to minimize training loss where the loss is calculated with torch negative log
likelihood loss function (43). The GCN framework has the flexibility of performing single-task as
well as multi-task learning. The framework can also handle training large datasets by clustering the
graphs, which is performed by grouping the proteins to ensure the entire protein graph stays within
one cluster.
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3 Experiments

For our training experiment only one 3D structure model per protein is included in the dataset. Also,
models lacking any binding annotations are not used for training to prevent excessive false negative
labels from biasing the dataset, which corresponds to 3630 total proteins consisting of 1,749,863
residues (after filtering missing values). The 3630 total proteins are randomly splitted into 3160
training proteins and 5× 100 validation proteins. In order to evaluate the GCN framework, for each
train and validation set four separate graphs are built with different distance threshold cutoffs of
5Å, 8Å, 10Å, and 15Å for defining the residues (nodes) connections. For prediction targets that
are residue labels in the protein graphs, six residue classification tasks are considered. These tasks
include post-translational modifications from UniProt and small molecule binding sites from BioLip,
ligands, nucleic acid, peptide and inorganic, that are mapped onto UniProt sequences. For all the
experiments performed, the GCN layer structure consists of: four network layers of sizes 26, 16, 16, 8,
and one output layer of size 2.

4 Results and Discussion

In this section, we demonstrate capabilities of our GCN framework for residue characterization
across multiple tasks explained in Section 3. We trained the network for 10,000 epochs for all the
tasks. After each epoch, to quantify the network performance, the area-under receiver operating
characteristic curve (ROC AUC) is averaged on five validation sets for each prediction experiment.
These curves suggest about 75%− 100% for ROC AUC, which are representative of a high-quality
residue characterization model (Fig. 2). Transmembrane residue and peptide binding site predictions
resulted in the highest and lowest performances of 0.996 and 0.754, respectively, across the tasks.
Prediction of transmembrane regions from a 3D structure is nearly trivial given the consistent
structural topologies and residue properties in membrane spanning regions. The task was intended as
an easy positive control to help in the design of the model. Peptide-binding is considerably more
difficult as the structural determinants that differentiate peptide interactions from other ubiquitous
forms of protein self-interaction, homomeric or heteromeric interactions may be very subtle.

It is observed that changing distance cutoff in graph generation affects the performance across all
prediction tasks; however, the effect is not similar. For example, distance cutoff has the maximum
effect on performance of nucleic acid binding site prediction while the minimum effect on modified
residue prediction task with maximum ROC AUC difference of 0.062 and 0.009, respectively. In the
case of nucleic acid binding, the task-dependent preference for larger distance contact networks cutoffs
may be a sign that the model is recognizing long-range bulk electrostatic effects. However, more
task-dependent preferences and exploratory ablation studies are required before we can confidently
link model performance observations with biophysical rationale.

Conclusion

We introduced a GCN framework for residue characterization with AlphaFold2 protein structure
as input to the network. The proposed methodology constructs protein graph representations and
exploits the structure features of target residue and its spatially adjacent residues in the protein
graph by applying multiple layers of graph-based convolutions. It has significant advantages over
residue task-specific prediction models by providing a unified framework that can be used for any
new residue-based annotation prediction, where it simultaneously benefits from iterative network
refinements and inter-task comparisons.

Broader Impact

This study is an active work in progress, requiring additional comparative studies, algorithmic
improvements and task analyses. Once complete, it will be documented in an equitable, open access
medium and the codebase will be released to the greater community for subsequent academic research
and application in the biotechnology, agricultural and pharmaceutical industries.
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(a) Binding site annotations (b) UniProt annotations

Figure 2: Proof-of-concept Area Under the Receiver Operating Characteristic Curves (ROC AUC) for
six residue classification tasks, each generated by four separate models at varying threshold distances
for the protein contact network (5Å, 8Å, 10Å, and 15Å). (a) Four classification tasks obtained by
mapping residue annotations from multiple BioLip entries onto the corresponding protein dataset,
providing trainable labels, including ligand, peptide, ion, and nucleic acid binding sites. (b) Two
classification tasks derived from UniProt annotations, including transmembrane and modified residue.
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