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Abstract

Modeling of protein side-chain conformations is a long-standing subproblem in
protein structure prediction. It helps to refine experimental structures with poor
resolution, and is used for sampling side chains in computational protein de-
sign. Related studies date back to the 1980s starting from statistically analyzing
side-chain conformations, developing energy functions, and implementing algo-
rithms for decomposing the side-chain interaction graph as subgraphs such as in
SCWRLA4. Here we employ a geometric deep-learning method Relation-Shape
Convolution(RSConv) originally applied to point clouds, to the side-chain problem.
With features consisting of the backbone atom Cartesian coordinates (in a local
frame), backbone dihedral angles, and residues types of neighbors, we achieve a
favorable testing set accuracy of the chil dihedral angle of 89% and chi2 accuracy
of 83% given correct chil angles on our test set. Our prediction accuracy strongly
correlates with the experimental atomic displacement B-factors of the side chains.
The chil dihedrals with B-factor less than 30° representing about 53% of all side
chains in our dataset have prediction accuracy of 93%. The 93% rate is comparable
to the chil accuracy in AlphaFold2 when it achieves high backbone structure
recovery (100 IDDT C,).

1 Introduction and related work

1.1 Past work on side-chain modeling

Correct packing of protein sidechains is crucial for both protein-structure prediction and refinement
of experimentally determined protein structures. Side-chain degrees of freedom expressed in dihedral
angles mostly fall into three clusters referred to as the g-(-60), t(180), and g+(+60) chi rotamers.
Their frequencies, angles means and variances are reported in “rotamer libraries". [1, |2, [3] Rotamer
frequencies and mean angles can be backbone conformation independent or dependent. The latter
are constructed over a grid of backbone phi and psi angles in 10 degrees bins. [4, |5, |6] Backbone-
dependent rotamer libraries result in more accurate side-chain conformation prediction and more
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efficient protein design. These libraries can be estimated accurately with adaptive kernel density
estimates and regression [7, |8]]. Protein side-chain conformation prediction proceeds by sampling
conformations from a rotamer library and a search algorithm over the available conformations utilizing
a scoring or energy function. For instance, the SCWRL4 algorithm identifies impossible combinations
of neighbor conformations with a collision detection method and finds the global minimum of its
energy function with a graph tree decomposition algorithm. Methods such as SCWRL4 and other
similar strategies [9} 10} |11} |12}, |8]] are limited by discrete rotamer sampling and the ability of the
energy function to identify the native structure.

More recent deep-learning based methods [[13} |14, |15]] which directly predict protein side-chain
conformations conditioned on their molecular environments, can model conformations to fine gran-
ularity and substantially reduce the modeling time required for sampling. It enables representing
the complex geometric environment as learned by neural networks. This is different compared to
Monte-Carlo based ROSETTA or molecular dynamics with explicitly learned energy [[16} |17, [3] with
one-body, two-body, three-body energies [[18]]. The neural network approach immediately projects
the neighboring geometric information to a representation that can capture complex relations.

1.2 Geometric deep-learning on point cloud and protein structure data

Geometric deep learning has been applied to point clouds for protein data and other domains [|19}
20, |21} 22, |23]]. Graph convolutional networks have been used for geometric learning problems,
where node features are generally properties associated with a node and edge features describing
relative positions between two points. Convolution operations can enable interactions between node
and edge features and learn over a neighborhood in the graph. Several methods that accomplish
this have been described. In dynamic graph CNNs(DGCNN) [21]], an edgeConv operation is a
function of the edge x; — x; as relative coordinates and features of the graph neighbors of node i. A
permutation invariant aggregation function or max pooling applies to the neighbors of ¢, expressed

as max;en(;) { f e —x)+ f (arl)} where N; denotes the neighborhood of i. In the Crystal

GNN [23]], a more complex neighborhood function is used which updates node representation v;
from the previous iteration as: v; + > ;e i) {F ([vi [ vj [ €i5]) © f([vi || vj [ €i5])} where ©
denotes channel-wise multiplication. Channel-wise multiplication is applied between the outputs
of F and outputs of f before symmetric aggregation. In Edge-Conditioned-Convolution(ECC) [20],
the neighborhood function 3, v ;) {F (€i;) © f(x;)} has F(e;,;) generating weights that are
specifically conditioned on e; ; and multiplies them with f(z;). In relation-shape convolution(RS-
Conv) [22], the neighborhood is learned as fn(z,) = Aj.en@yiM (ei;) © f (x;)}, where A is a
symmetric aggregation function. This is similar to ECC but with more choices for edge features e; ;
and neighborhood selection N (x;).

In the side-chain prediction problem, we start with an input backbone atom coordinates and amino
acid types of each residue in the sequence. Neighboring residues in the sequence are connected by
backbone dihedral angles that can be computed from the atomic coordinates. Two residues spatially
close to each other are governed by van der Waals and electrostatic interactions. Learning to aggregate
local geometric relations may lead to an efficient local protein structure learning function. In this paper,
we define specific node and edge features, utilize RS-Conv to learn geometric relation-dependent
weights applied to the node features, and build an effective architecture to learn a neighborhood
representation of each side-chain for their conformation prediction.

2 Notation and featurization

In order to mimic the experimental data closely, from the asymmetric unit (ASU) of the protein crystal,
we build all neighboring proteins in the crystal that contact the ASU. The residues in a constructed
crystal are divided into two sets: one set consists of residues in the chain(s) we are interested in
(Vguery), While the other set consists of all residues in the structure({/5;;). For each residue in Vgyery,
edges are built between the residue and its neighboring residues in ,;;. The neighborhood consists
of either the 12 nearest residues or those falling within 10 A Cov — Clax distances. The constructed
graph ¢ = (V,y;, &) with a directional-edge set & records the neighboring residues for each query
residue. The residues in 1/,;; are considered as nodes with node features X € R¥au *F" and edges in
& have edge features E € RM¢*9, The node features z; include amino acid types and the sin and



cos of the backbone ¢ and 1) angles. The edge features e; ; are angular orientations and distances
of neighboring residue pairs, one-hot encoding of whether the residues are immediate neighbors of
the query residue along the protein sequence, and neighboring residue backbone coordinates derived
from the backbone reference frame in the sense that the query residue backbone coordinates always
orient in the same direction with C'a, at the origin(more details in Sup 6.1). We represent each
side-chain dihedral as (sin, cos) pair and enforce the continuous dihedral prediction by the network.
Structure correction and side-chain filtering are noted in Sup 6.2.

3 Highlights of the architecture and feature incorporation:
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Figure 1: Schematics of feature extraction and network architecture.

The neighborhood learning operation around each query residue is based on RSConv [22] network
and implemented as shown as Figure[I] Residues are abstracted as nodes with features x;, and any
pair of residues connected in graph G = (V,;, €) ) are referred as edges with edge features e; ; being
the geometric descriptors between the residues as distances and orientations. The neighborhood
structure of a node 4 is learned from fy () = Ajen){M (ei ;) © f ([z; || e j])} where [x; || e; ;]
is the concatenation of the node and edge features for node j in the neighborhood of node i. The f
takes in the concatenated features and outputs what can be perceived as node representations. The M
maps the edge features to a higher-dimension to be multiplied with the output of f. The A operation
can be any symmetric aggregation function to achieve permutation invariance of the neighboring
residues. In e; ;, the residue-pair dihedrals, angles, distances, one hot features which are all invariant
to the rigid rotation of the Cartesian coordinates. The Cartesian coordinates of neighbors in the local
frame are derived from the local backbone frame of the query residue and do not change with rigid
protein rotation either. In our basic implementation, a concatenation of max, min, average mixed
pooling is used to extract richer information [24]]. Comparing to previous models, our implementation
"RSConv-basic" has the following items: (1) node and edge features [x; || e; ;] are input to f, whereas
RS-Conv takes the form M (e; ;) ® f(x;); (2) we tested both k-nearest-neighbors with k=12 similar

to DGCNN [21]] and the spherical neighborhood as in XENet [19] with a radial threshold of 10/0\;
(3) the representation of the query residue and its neighborhood are combined by adding f ,, with
the fn(z,) as f1,.2;, = fo.x; + [N(x:)> and we tried both only one message passing(MP) iteration and
two rounds of MP in our experiments. (4) inclusion of atom coordinates X, o¢qtedcoordinates from the
set of neighborhood residues derived in the fixed backbone frame of the query residue, which is not
explored in DGCNN, RS-Conv, or XENet.

4 Experiments and Results:

We first implemented and trained the basic model and tested several variations of it (Table[I)). Our
basic model "RSConv-basic" has convolution in the form of A;en, {M (e; ;) © f ([z; || ei;])} as
introduced in the previous section, with neighborhood N, being k-nearest neighbors with k equal to 12,
and concatenates max, min, avg pooling adding up to a depth of 3072. We tested different variations
of the model architecture and feature combinations, measured the percentage of predicted chil and
chi2 within 40° of the ground truth values, for chi2 we only included the ones with the correctly



predicted chil(because correct prediction of chi2 is irrelevant if chil is wrong). Our experiment
indicates that two variations have the most important impact on the prediction performance. First, if
we use only f ([z;]) instead of f ([x; || e; ;]) without the concatenation as in "RSConv-f ([x;])", the
chil accuracy drops by 2%. Not using transformed C,, coordinates in the edge feature as in model
"RSConv-(e; ;: nocartesian)" does not decrease prediction accuracy much. Second, inclusion
of all four backbone atom coordinates as in "RSConv-(e; ; : Xj ;) &10A" increases the prediction
performance by 0.9% for chil and 2.2% for chi2 given chil is correct and leads to the highest
accuracy among all variants.

Table 1: Benchmark on test set using different network architectures and feature combinations. X; ;
are the four NV, Ca, C, O backbone coordinates. All accuracies are based on 40° difference criterion.

Model I;ﬁzrlltj;- 'Test accuraC)./ ) dataset

chil chi2 given

chil correct
RSConv- (e; j : X; ;)& 10A 1 0.886 0.826 40% less identity
RSConv-basic 1 0.877 0.804 40% less identity

RSConv-basic 1 0.868 0.817 Ecod - split

RSConv-two-MP-iter 2 0.875 0.818 40% less identity
RSConv-Maxpooling 1 0.871 0.812 40% less identity
RSConv-f ([z;]) 1 0.857 0.802 40% less identity
RSConv- (e; ; : nocartesian) 1 0.871 0.807 40% less identity

Comparing to one message passing in "RSConv-basic", implementation of the model with two
rounds of message passing denoted as "RSConv-two-MP-iter" shows some increase in chi2 given
chil correct accuracy but similar chil accuracy. We speculate that the correct packing is mostly
determined by the immediate neighbor residues and the more distant residues do not bring any
significant benefit. Further, the test accuracies with more rigorous dataset splitting technique "Ecod-
split" are a little lower but within 1% for chil. In this dataset we split training/testing/validation
based on Ecod[25] homology groups to guarantee low homology between sequences within the same
split, and the similar results suggests that previous model accuracies are not observed due to possible
homologies between training and testing sets. For "RSConv-Maxpooling" only using max pooling,
the chil and chi2 accuracies are similar to the ones from "RSConv-basic"model; it suggests that
mixed pooling is not essential for getting chil accuracy above 87%.

In the test result of the best performing model "RSConv-(e; ; : X; j) &10A", the predicted dihedral
angle distribution overlaps with the ground-truth distribution as shown in Suppl. Figure|l|and
including some low-density regions as shown in Suppl. Figure 2] It is apparent that the prediction
accuracies are dependent on the relevant atomic displacement B-factor as shown in Suppl. Figure
Different residue types have different prediction accuracies, and how steeply the prediction accuracies
decrease as B-factor values increase also varies among different residue types. This is likely due
to the fact that some polar protein side chains sample multiple rotameric conformations within a
single protein crystal. Many of those with high B-factors are likely multi-conformational, while
the deposited coordinates may reflect only one possible conformation [26, 27, [28| |29]]. This may
contribute to the prediction accuracies that we observe: the current single value prediction model is
incomplete and the mispredictions may correspond to flexible parts of the structure.

5 Conclusion:

Side-chain conformation prediction typically depends on some form of “packing” algorithm, where
side chain rotamers are sampled to minimize clashes between them. In contrast, we find that a
deep-learning algorithm can perform as well or better than packing algorithms with features based on
residue type, relative orientations, and backbone dihedral angles of each residue and its neighbors. We
extract residue level node features and between residues edge features to learn the local neighborhood
chemical environment of any residue through convolution operations originally applied to pointclouds.
We find that concatenating backbone dihedrals as node features and relations between residues as edge
features most obviously improves the prediction performance. We find that including the backbone



atomic coordinates of neighboring residues in the fixed reference frame defined by the query residue
also increases the model performance. So far in our experiments, a spherical neighborhood is
comparable to using the 12 nearest neighbors. A future direction is to find side chains which are
particularly affected by more distant residue conformations and further study an effective architecture
to learn those cases. Furthermore, a probabilistic framework may be necessary to account for the
flexible side chain conformations.
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6 Supplementary results:
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Suppl Figure 1: The true vs predicted chil dihedrals.
The model learned the finer details as the predictions positively correlate with the true dihedrals
within each residue type and rotamer class in many cases — most obviously in TYR, PHE, PRO.
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Suppl Figure 2: Predicted and true chi dihedrals density map overlap.

The x-axis corresponds to the chil dihedrals and y-axis indicates densities. The predicted dihedrals are
more concentrated compared to the experimental values. The overall data distribution are successfully
learned by the model.
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Suppl Figure 3: Chi dihedrals prediction accuracy by b-factor interval.

The y-axis in each plot corresponds to prediction accuracies and the x-axis is the B-factor interval; chil
accuracy and the chi2 accuracy given correct chil prediction are shown in red and black respectively.
The B-factor is recorded using the fourth atom of the atoms involved in defining the corresponding
dihedral. The prediction accuracies all tend to decrease with higher B-factor intervals. Some residues
have a steeper decreases with increasing B-factor such as in ARG, GLU and LYS. SER has low
prediction accuracy compared to other residues even at low b-factor interval. TRP, TYR and PHE all
have high prediction accuracies and are relatively unaffected by the increase in b-factor values.

6.1 Features:

residue—pair—geometric | |6positionalfencoding| ‘erotated—com“dinateS]
0,J (%] ,J

(a) Pairwise features between any two residues in a protein:

1. Edge features: e; ; = [e



For each pair of residues, a vector of length 23 :
* Backbone dihedrals:
- Ch—1— N—Ca—C(resl)
- N—Ca—C — Npyi(resl)
- Ch_1— N—Ca—C(res2)
- N—Ca—-C— Ny;1(res2)
* Angles:
- N1 — COél — CO{Q
- COZl — CQQ — N2
- COZQ - N2 - C2
* Residue-pair Dihedrals:
- lelecoqfoaz
- Ny —Caj; —Cag — Ny
- OOq—COéQ—NQ—CQ
* Distances:

- Ca1 —COéQ
- NQ—CQ
- COZQ_NQ

In total there are ten angular values coded into sine and cosine values, make it a
vector of length 20. Adding in 3 distance values it becomes a vector of length 23.
This vector is used as the edge features between any two residues although not all
elements are describing pairwise relation. The angle C'ovgy — No — C'5 and bond lengths
— (5, Cag — N5 are included because they are needed for rebuilding the 2nd residue
backbone coordinates given the first residue. The backbone dihedrals are included
as they imply the side-chain orientations(e.g., as in the backbone-dependent rotamer
library) and are needed to fully describe two residues orientations in space.
(b) The relative position of a residue in the protein sequence relative to another residue:
* Positional coding: If it is direct upstream in the sequence, it is [1,0,0]; if direct
downstream in sequence, it is [0,0,1], if neither [0,1,0]
(c) Pairwise features computed for a set of neighboring residues w.r.t. their query residue:
¢ Transformed (z,y, z) coordinates of the N, Car, C, O atoms of the 12 neighbor
residues of any query residue.
i. A translation vector and a rotation matrix is computed for each query residue, so
that after applying the translation and rotation to the query residue coordinates
in the pdb file, the C'«v atom of query residue is at (0,0,0), the coordinate vector

Ca— (t points to the direction of (1,1, 1; and the N, C'«r, C atom coordinates lie
on the plane defined by points (0,0,0), (1,1,1), (1,1,0) in the Cartesian space.

ii. The rotation matrix is computed using two vectors Ca — C' and Ca — N. A

rotation matrix needed for rotating vector C,, — (2 to align with the vector (1,1,1 )
is computed. The rotation matrix is then applied to Ca — N. Another rotation

matrix needed for rotating the rotated vector Caov — N/ around an axis defined by

(1,1,1 ) to the plane defined by coordinates (0, 0,0), (1,1, 1), (1,1, 0) is calculated.
The second computed rotation matrix is multiplied with the first rotation matrix
and results in rotation matrix that can to applied to the sets are first translated
query backbone coordinates and neighbors backbone coordinates. The original
coordinates of the query and its neighbor residues atom set is first translated by
the C'a position so that the query C is at (0,0, 0), then they are rotated by the
rotation matrix.

iii. The above operation generates neighbor coordinates derived from the local refer-
ence. In these frames, the query residue always orients in a specific direction. The
features are similar to the backbone frame shown in AlphaFold2 [30], but we use a
slightly different definition to construct the frame. The math is described in section
6.3. When applying the rotation and translation to both a query residue and its
neighboring residues, the relative coordinates derived from the frame along with
other parts of the edge features describe the spatial relations between any pair of a
neighbor residue and the query residue.




2. Node features: Ty = [l'onehot‘|xbackbonedihedral]

(a) One hot encoded residue identity by a vector of 21.
(b) Backbone dihedrals coded into sine and cosine values, this corresponds to a vector of
length 4 for each residue.
* Cln=1)—N-Ca-C
e N-Ca—-C—-N(n+1)

6.2 Data filtering and splitting

The side-chain atoms coordinates are extracted and the corresponding side chain dihedrals are
calculated. We correct for inconsistencies in atom name assignment for symmetric side chains, such
as Asp, Glu, Tyr and Phe. We use the REDUCE program [31]] to fix the atoms in the terminal
dihedral angles of Asn, Gln, His based on their analysis of hydrogen bonding interactions. Residues
are marked out for having chain breaks if the C' atom of the residue and the IV atom of the next
residue have distances greater than 2A and the related backbone dihedrals are substituted with -90°.
In some past studies, crystal contacts are found to help to recover the chi dihedrals [§8] and we
reconstruct the crystal units which lies within 5A of any C'a atom in the deposited asymmetric
units(ASU) and include neighboring asymmetric units for feature extraction. We use two datasets
for our side-chain prediction modeling. The first dataset is a set of PDB chains culled using Pisces
with selection criterion of sequence identity below 40%, resolution better than 3 and R value smaller
than 0.3. The set of chains are then divided into three sets with 80% of the chains as training cases,
10% as validation cases, 10% as testing cases. We also construct another dataset with data splitting
between training/validation/testing based on ECOD homology groups [25]]. Groups are divided into
each of the three sets rather than the sequences. As proteins of different ECOD groups are mostly
evolutionarily unrelated to each other therefore this splitting method can serve to prevent overtraining.
Proteins in each ECOD in the same set are further filtered by resolution cutoff of 2.0A and lower than
80% sequence identity.

6.3 Rotating local coordinates

To extract geometric information from point clouds, experimenting with different geometric priors
sometimes leads to better model performance [21]]. In our case the points are the neighboring residues
of a query residue. We use backbone atoms in the query residue to define a backbone reference frame,
then use the residue neighbor coordinates derived in the backbone reference frame as the geometric
descriptors. Such backbone reference frame are calculated for each query residue by performing a
sequence of translation and rotations of its original coordinates in the pdb file to the predefined atoms
positioning.

1. For a query residue, identify the coordinates of C'a, C and N atoms, translate these points
so that Cau = (0,0,0) .

2. Get the rotation matrix which rotates (Ca — C; to align with (1,1, 1;

(a)
= (Ca—-C
‘(Ca—C ‘
(b)
‘(1,1,1 ‘
(©)

?:ﬁXﬁz (11,12,13)
(d) Take skew:

0 13 1,
A=|1; 0 —L
1, 1, 0
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(©
p—mT

®
1

)

3. Apply the rotation matrix R to Ca — 3:
G=RoCa—_N

4. Get the rotation matrix which rotates ﬁ around the axis T so that it will be on the same
plane as defined by (1,1, 0 and ,
(a) Calculate the normal to the plane where 8 and T lies in

o=nxq
(b) Calculate the normal to the target plane

?:ﬁqumi

(c) Calculate the angle between the two planes which normals are Gand T.

s=7-0

1.

i.
t =1 (Tx3)
iii.
0 = arctan2 (t, s)

(d) Find orthogonal vectors that extend F , and make an orthonormal basis:

i.
U= rand :(ll]_,llzﬂ.lg;

ii.

iii.

iv.

(e)
1 0 0

Y =|0 cosf sinf
0 —sinf cosf

®
Z=[XY]X?!

5. Multiply the two rotation matrices to get the overall rotation matrix

(a)
T=Z7ZR
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