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Abstract

Engineering a protein’s stability improves its shelf life and expands its application
environment. Current studies of protein stability often involve predicting stability
change from single-point mutations. However, the prediction model must be able
to resolve single-character difference in a protein sequence hundreds of amino
acid long. In this study, we predicted single-point mutational effect on protein
stability and compared sequence-only and geometric learning approaches using
sequence embedding. We showed that sequence-only models suffice in predicting
single-point mutational change. A simple MLP incorporating only the embedding
at the mutation site achieves similar performance with geometric model. The
observation is consistent across 28 single-point mutational datasets with a wide
range of functional properties.

Protein stability enhancement has been a focus in protein engineering due to its role in extending a
protein’s shelf life and expanding its application environment. Typical protein stability studies in silico
predict stability change of the mutated sequences and validate the predicted outcome experimentally.
However, capturing a protein’s change of stability upon single-point mutation has been challenging:
first, it is unknown how far a mutation’s effect will propagate to its neighbors in physical and sequence
space. Second, the prediction model must be able to resolve the single-point mutation amid the length
of protein sequence up to hundreds or even thousands of amino acids.

Traditional molecular modeling predicts protein stability by describing the physical basis behind
the models. For instance, Frenz et al. performed mutation and structural relaxation in silico, and
showed moderate performance on a multi-protein dataset [1, 2]. However, systematic evaluation
on single-protein point mutations discovered only weak correlation between experimental data and
predictions generated from molecular modeling or machine learning based on molecular modeling
features [3]. Alongside structural modeling, evolutionary analysis incorporates only protein sequence
information. Recently, protein language models were developed and have shown their ability to
perform supervised and unsupervised functional predictions. [4–11].

In this study, we compare geometric and sequence-only models in protein stability prediction
incorporating embeddings from protein language model. Following Gligorijević et al.’s work in
annotating protein function from structures [12], we applied graph convolution to prediction of
single-point mutational change and compared the performance to non-geometric baselines.
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1 Method

1.1 Datasets

Romero et al. measured the susceptibility of beta-glucosidase (bgl3) to heat challenge in the dataset
used for this study [13]. We used the 33th layer of Evolutionary Scale Modeling (ESM-1b) as
the sequence embedding [4], whereas a mutation is represented as the difference between mutant
sequence embedding and that of wildtype, defined as a simple subtraction in this study. We denote the
difference as mutational embedding which represents the mutational effect on the whole sequence.

Missing residues in the crystal structure (PDB code: 1gnx) [14] poses a challenge in geometric
learning. As such, we generated protein graph from AlphaFold2 [15] on wildtype sequence, which
has a root-mean-square deviation (RMSD) smaller than 1Å from the experimental structure (figure
A12), and approximated the single-point mutant structure with that of wildtype. For geometric
models, we defined Cα atom of each residue as a node and edges were drawn between nodes if
they are within 6Å from each other. Mutational embedding corresponding to each residue was then
assigned to the respective node on the protein graph. The resulted 3500 samples were then randomly
split in 8-1-1 ratio as train-validation-test sets.

To broaden the scope of comparison between geometric and sequence-only models, we included
additional datasets from Riesselman et al., from which datasets were selected to avoid redundancy,
multi-protein, tRNA, multiple mutations and sequence length longer than 1024 for ESM-1b inference.
The resultant 28 datasets span a wide range of functional properties from enzyme function to cell
growth [16–35].

1.2 Model architecture

We tested one geometric and three sequence-only architectures, named as GCNModel, NoEdgeGCN,
SeqPoolingMLP and SingleSiteMLP.

GCNModel. Graph-convolution-based model. Graph input is passed through three layers of GCN,
global softmax aggregation [36], and finally a 3-layer MLP.

NoEdgeGCN. Sequence-only model. It has the same architecture as GCNModel but has no message
passing. Alternatively, it can be viewed as a GCNModel ignoring all edges in the protein graph.

SeqPoolingMLP. Sequence-only model. A 3-layer MLP after pooling mutation embedding on all
residues. This model is a special case of a single-layer GCNModel without message passing.

SingleSiteMLP. Sequence-only model specifically for single-site mutation prediction. A simple
3-layer MLP model which uses only the mutational embedding at the mutation site as the input.

Each convolutional layer is a submodule of GCN [37] followed by LeakyReLU. Each MLP layer
is a submodule of Linear followed by LeakyReLU. All hidden layers have the same channel size
in both GCN and MLP layers. All global softmax aggregation has an inverse temperature β of 1.
LeakyReLU has a default slope of 0.2 for x < 0.

The experiment was implemented in PyTorch, PyTorch Geometric and PyTorch Lightning [38–40].
The code can be accessed on github.

1.3 Untrained protocols and unsupervised predictions

Five untrained protocols and unsupervised predictions were evaluated. First, we benchmarked
traditional molecular modeling and sequence conservation methods, i.e. Rosetta Cartesian DDG
and Position Specific Scoring Matrix. Rosetta Cartesian DDG (cart_ddg) is a molecular modeling
protocol that mutates, relaxes, and scores the energetic difference between mutant and wildtype
structures [1], whereas Position Specific Scoring Matrix (PSSM), aligns sequences and scores the
likelihood of every amino acid type at each position on the query sequence, and was obtained through
psiblast on Uniref90 [41, 42].

Three unsupervised protein sequence models were evaluated. We included EVmutation and DeepSe-
quence which are protein sequence models accounting for pairwise interactions and higher order
interactions through variational autoencoder (VAE) respectively [10, 11]. Evolutionary Scale Mod-
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Table 1: Performance comparison on unsupervised and supervised predictions.
Model PCC SRC R-square

Rosetta cart_ddg NA 0.22 NA
PSSM NA 0.69 NA
EVmutation NA 0.74 NA
DeepSequence NA 0.76 NA
ESM-1v NA 0.61 NA

GCNModel 0.65±0.01 0.70±0.01 0.40±0.01
NoEdgeGCN 0.69±0.02 0.72±0.01 0.46±0.02
SeqPoolingMLP 0.71±0.01 0.73±0.02 0.49±0.01
SingleSiteMLP 0.77±0.00 0.78±0.00 0.57±0.01

eling (ESM-1v) is a BERT model trained on Uniref90 database and has been shown to perform
zero-shot prediction on a variety of single-point mutational datasets [4].

2 Results

Among all the unsupervised predictions, DeepSequence ranks the first with a Spearman Rank
Correlation (SRC) of 0.76 with mutational change of protein stability, as tabulated in table 1. Pairwise
model EVmutation performs similarly (SRC 0.74) while attention-based ESM-1v scores 0.61 on this
dataset without pretraining on homologous sequences. Interestingly, traditional sequence alignment
method (PSSM) has a strong correlation of 0.69 despite its simplicity. Rosetta cart_ddg ranks the last.
We omitted Pearson Correlation Coefficient (PCC) and R-square since the protocols are not designed
nor trained for the experiment readings.

Interestingly, sequence-only models suffice in predicting protein stability change on this dataset.
GCNModel has a slightly lower performance to that of NoEdgeGCN where no edge is drawn between
nodes. Despite having fewer layers, SiteSiteMLP and SeqPoolingMLP outperform GCNModel. The
result is insensitive to the choice of graph convolution, ESM weights and radius for edge definition
(figure A1, A2, A3).

Surprisingly, SingleSiteMLP which takes the embedding only at the mutation site outperforms all
other models on every metric. SingleSiteMLP surpasses SeqPoolingMLP, second in rank, by 0.06
in PCC, 0.05 in SRC and 0.08 in R-square. However, SingleSiteMLP is restricted to only single-
point mutation whereas GCNModel, NoEdgeGCN and SeqPoolingMLP have an architecture for any
number of mutations.

To test the generalizability of the observation, we expanded geometric and sequence-only model
comparison to another 27 single-point mutational datasets. Illustrated in Figure 1, sequence-only
model(s) perform equally or better than geometric model in all datasets except PAPB_singles in PCC
assessed by Wilcoxon signed-rank test (p < 0.05) and similarly on SRC and R-square (figure A4,
A5). In particular, SingleSiteMLP performs similarly or better than all other models in 25 out of 28
datasets in PCC. Switching from ESM-1b to onehot embedding results in significant performance
drop, which highlights the importance of pretrained sequence embedding (figure A7, A8, A9).

3 Discussion

We discovered that ESM-1b can resolve single-point mutations and capture neighboring interactions.
For example, the mutational embedding of R368G on beta-glucosidase reflects the removal of
hydrogen bond to residue D420 by highlighting its hydrogen bonding partner on the adjacent alpha
helix (figure 2). However, non-local interactions captured by the language model are relatively mild
on average.

To conceptualize non-local interactions, we use norm (magnitude) of the mutational embedding to
represent information contained in each residue. Residues with zero norm implies the language model
predicts no mutational effect on them, i.e. no difference between wildtype and mutant sequence
embedding. As such, prediction of mutational change shall not depend on these residues. On
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Figure 1: Performance comparison between geometric and sequence-only models on functional
predictions of single-point mutation. Beta-glucosidase stability dataset (BG_STRSQ) is bolded.
(Lower) PCCs evaluated on 28 datasets, ranked by SingleSiteMLP performance. (Upper) Differences
in PCC relative to geometric model.

Figure 2: R368G mutational embedding (left) ESM-1b and (right) ESM-1v of beta-glucosidase (bgl3).
The mutation site (residue 368) is represented in sphere. The embedding is colorized by the norm of
embedding on each node, i.e. white represents smaller norm and red represents larger value.

average, mutation site has a norm twice as large as compared to those 3 Å away. The contrast is even
stronger when focusing on residues geometrically close but non-adjacent in sequence (figure A11).
This potentially explains the locality of single-point mutational embedding and why sequence-only
model(s) performs similarly or better than geometric model.

4 Conclusion

We predicted single-point mutational effect on a protein’s stability and compared sequence-only and
geometric learning approaches. We showed that sequence-only models are sufficient for single-point
mutational prediction, and the observation is consistent for a variety of functional datasets. With
embedding only at the mutation site, a simple MLP model can predict single-point mutational change
with similar performance. This finding could be attributed to the observation that mutational effect
on average propagates weakly to residues geometrically close to mutation site but non-adjacent in the
sequence.
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A Appendix

A.1 Hyperparameter search and training

A hyperparameter search on {8, 16, 32} hidden channels and {0, 1e-6, 1e-4} weight decay was
performed on beta-glucosidase dataset. All models were trained on Adam optimizer with learning
rate of 5e-3, β1 = 0.9, β2 = 0.999 on a patience of 25 epochs and 256 batch size on RTX 2070.
For each model architecture, the best hyperparamters were picked based on PCC on validation set.
SingleSiteMLP has a weight decay of 1e-4 while the rest has no weight decay. All architectures have
32 hidden channels. We fixed the hyperparameters on the rest of 27 datasets. For each model type,
the reported performance is on test set by the checkpoint of the lowest mean-square-error (MSE) on
the validation set. All dataset-architecture pairs were repeated 5 times with random initialization
except the ablation study of onehot-encoding embedding.

A.2 Performance evaluation

Untrained protocols and unsupervised models were evaluated on the whole dataset whereas supervised
models were assessed on the test set only. For supervised models, all errors were estimated from 5
randomly initialized models by standard error of mean. Performance of ESM-1v were evaluated on
the average performance of masked-marginals over esm1v_t33_650M_UR90S_[1-5].

A.3 License

Evolutionary Scale Modeling (ESM) is available on https://github.com/facebookresearch/
esm. Both ESM and the code for this project are licensed under MIT license. The github to the
project is https://github.com/SimonKitSangChu/MLSB2021.

Figure A1: Performance comparison between using ESM-1b and ESM-1v embeddings on beta-
glucosidase stability dataset. Model performance was evaluated on (left) PCC, (middle) SRC and
(right) R-square.(Upper) Differences in performance metric compared to geometric model.

A.4 Embedding localization analysis

For each mutation in the dataset, we calculated the norm of mutational embedding on each residue,
and normalized it across all residues. The statistics was then binned by geometric distance from
mutation site, and averaged across all residues within that bin. We highlighted non-local mutational
effect on residues geometrically close but non-adjacent on sequence, by filtering out nodes 1) closer
than 16 residues from mutation site on sequence and 2) further from 25 Å geometric distance. The
observation on beta-glucosidase dataset (figure A11) is consistent with those on all 28 datasets.
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Figure A2: Performance comparison of radius choice in edge definition. All units are defined in
angstrom. Model performance evaluated on (left) PCC, (middle) SRC and (right) R-square. (Upper)
Differences in performance metric compared to geometric model.

Figure A3: Performance comparison between SingleSiteMLP, GCNConv, SAGEConv and GATConv
models on beta-glucosidase stability dataset.

A.5 Position Specific Scoring Matrix

The Position Specific Scoring Matrix (PSSM) was obtained through psiblast with the following
command.

psiblast -query dataset.fasta -db uniref90 -num_iterations 3 -out_ascii_pssm dataset.pssm
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Figure A4: Performance comparison between geometric and sequence-only models on functional pre-
dictions of single-point mutations. (Lower) SRCs evaluated on 28 datasets ranked by SingleSiteMLP
performance. (Upper) Differences in SRC relative to geometric model.

Figure A5: Performance comparison between geometric and sequence-only models on functional
predictions of single-point mutations. (Lower) R-square evaluated on 28 datasets ranked by Single-
SiteMLP performance. (Upper) Differences in R-square relative to geometric model.
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Figure A6: Performance comparison between supervised SingleSiteMLP and unsupervised models.

Figure A7: Performance evaluation when trained on onehot encoding. (Lower) PCC evaluated on 28
datasets ranked by SingleSiteMLP performance. (Upper) Differences in PCC relative to geometric
model. Only samples with PCC > 0 were visualized.
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Figure A8: Performance evaluation when trained on onehot encoding. (Lower) SRC evaluated on 28
datasets ranked by SingleSiteMLP performance. (Upper) Differences in SRC relative to geometric
model. Only samples with SRC > 0 were visualized.

Figure A9: Performance evaluation when trained on onehot encoding. (Lower) R-square evaluated
on 28 datasets ranked by SingleSiteMLP performance. (Upper) Differences in R-square relative to
geometric model. Only samples with R-square > 0 were visualized.
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Figure A10: Illustration of GCNModel architecture. GCNModel takes protein graph with mutational
embedding as input and passes it through three layers of GCN, global pooling, and three-layer MLP
to predict the mutational change of stability.

Figure A11: Average mutational embedding norm on each residue (normalized) versus geometric
distance from mutation site. Blue bars represent statistics on all residues averaged over all mutations.
Red bars include residues geometrically close but non-adjacent on sequence.
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Table A1: Predicted lddt on AlphaFold2 model used in protein graph construction.
Dataset plddt

AMIE_PSEAE 97.96
B3VI55_LIPST 95.18
BG_STRSQ 93.66
BLAT_ECOLX_Ostermeier2014 94.91
BLAT_ECOLX_Palzkill2012 94.79
BLAT_ECOLX_Ranganathan2015 94.69
BLAT_ECOLX_Tenaillon2013 94.89
CALM1_HUMAN 84.91
DLG 76.46
GAL4 67.13
HSP82 85.15
IF1_ECOLI 86.51
KKA2 93.83
MK01_HUMAN 90.00
PABP_singles 81.04
PTEN_HUMAN 82.90
RASH_HUMAN 92.18
RL401_Bolon2013 94.15
RL401_Bolon2014 94.00
RL401_Fraser2016 93.88
SUMO1_HUMAN 78.59
TIM_SULSO 95.84
TIM_THEMA 95.53
TIM_THETH 97.05
TPK1_HUMAN 97.96
TPMT_HUMAN 95.03
UBC9_HUMAN 97.00
YAP1_Fields_2012 56.78

Figure A12: Alphafold2 models in green aligned to beta-glucosidase (bgl3) crystal structure in gray
(PDB code: 1gnx). The average root-mean-square deviation (RMSD) from the model to crystal
structure is 0.56 Å.
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