Predicting cryptic pocket opening from protein
structures using graph neural networks

Michael Ward*
Department of Biochemistry and Molecular Biophysics
Washington University in St. Louis
mdward@wustl.edu

Artur Meller*
Department of Biochemistry and Molecular Biophysics
Washington University in St. Louis
ameller@wustl.edu

Meghana Kshirsagar Felipe Oviedo Perhavec
Al for Good Research Lab Al for Good Research Lab
Microsoft Microsoft
Meghana.Kshirsagar@microsoft.com Felipe.Oviedo@microsoft.com
Jonathan Borowsky Geralyn Miller
Department of Biochemistry and Molecular Biophysics Al for Good Research Lab
Washington University in St. Louis Microsoft
borowsky. jonathan@wustl.edu geramill@microsoft.com
Juan Lavista Ferres Gregory R. Bowman
Al for Good Research Lab Department of Biochemistry and Molecular Biophysics
Microsoft Washington University in St. Louis
jlavista@microsoft.com g.bowman@wustl.edu
Abstract

Proteins undergo structural fluctuations in vivo which can lead to the formation
of pockets unseen in the native, folded structural state (i.e. “cryptic pockets”).
Inferring cryptic pockets from experimentally determined protein structures is
valuable when developing a drug since ligands typically require a pocket for tight
binding. Toward this end, many studies employ molecular dynamics simulations
to model protein structural fluctuations, but these simulations often require 100s
of GPU hours. We hypothesized that machine learning algorithms that predict
sites of cryptic pockets directly from folded structures can speed this up. Here,
we adapt a graph neural network architecture, which previously achieved state-of-
the-art performance on protein structure learning tasks, to predict sites of cryptic
pocket formation from experimental protein structures. We trained this model by
re-purposing an existing molecular simulation dataset that was generated to identify
cryptic pockets in SARS-CoV-2 proteins. Our model achieves good performance
(AUC=0.78) on a held-out test set of protein structures with ligands bound to
cryptic sites and requires < 1 second of compute on a single GPU.
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1 Introduction

A structure of a protein’s native, folded state can reveal potential drug binding sites, but leaves us
blind to other potential sites that form as the protein structure fluctuates in solution. There are over
100 confirmed examples of these “other” binding sites where a small molecule binds in a pocket on a
protein which was not observable from any previously determined structure of that protein (i.e. a
“cryptic pocket”)[1]. Currently, it is challenging to predict these cryptic pockets from ground state
experimental structures, but the ability to do so would come with several benefits. For example,
protein structures that lack any obvious binding pockets are often considered undruggable[2], but
they may actually prove to be good drug targets if they have a cryptic pocket that can be targeted.
Even if a protein structure already reveals a binding pocket that can be targeted with a small molecule
(e.g. an active site), it is useful to know if there are cryptic pockets as targeting cryptic pockets may
improve specificity (i.e. reduce off-target effects when targeting a family of homologous proteins) or
lead to the discovery of allosteric activators [3],[4].

Current methods for identifying cryptic pockets in proteins are either slow or have low accuracy.
Molecular dynamics simulations, which use physics-based force fields to model protein structural
fluctuations [5], are the primary means to identify and sample structural configurations of cryptic
pockets but they often consume 100s of GPU hours per protein. Ideally, one could employ an
algorithm that quickly and accurately determines if a protein will form a cryptic pocket, then use this
result to determine if resources should be deployed to run a costly simulation or an experimental drug
screen. Cryptosite is one such machine learning algorithm that predicts which amino acid residues of
a protein will form a cryptic pocket with good performance (AUC=0.83)[1]. However, this method
takes ~1 day to run because it relies on simulation data as input to the algorithm. When simulation
features are removed, its performance markedly drops (AUC=0.74)[1]. In the current study, we train
a graph neural network to accurately determine sites of cryptic pockets from experimental structures.
In a previous study, molecular dynamics simulations were performed to identify and sample cryptic
pockets across most proteins in the SARS-CoV-2 proteome and ~50 new potential binding sites were
uncovered [6]. Across these simulations, there are thousands of events where a cryptic pocket forms.
We used these events as training examples to train a graph neural network to classify whether or not a
residue is likely to participate in a cryptic pocket given the protein’s 3D topology and the chemical
environment of its neighborhood.

2 Predicting cryptic pockets with Geometric Vector Perceptrons

We hypothesized that the propensity of an amino acid residue to participate in a cryptic pocket is
a function of the 3D topology and the chemical environment in which the amino acid resides. On
one hand, if a residue is in a tightly packed region of a protein and has extremely strong attractive
interactions with its neighbors, it is unlikely to undergo a structural rearrangement that creates a
pocket that a ligand might bind. On the other hand, if a residue is in a loosely packed environment
and has weak interactions with its neighbors, it may be more likely to be in a region that forms a
cryptic pocket. Given this hypothesis, we sought to train a model that takes a protein structure as
input and outputs a value that indicates the likelihood that each amino acid residue will participate in
a cryptic pocket.

Previous work has established that graph neural networks are an efficient way to learn complicated
tasks from 3D protein structures. Specifically, a graph neural network architecture that employs a
Geometric Vector Perceptron (GVP) has been previously shown to accurately evaluate the model
quality of predicted protein structures and also successfully predict feasible protein sequences from
3D structures [7]. Briefly, the GVP-based graph neural network takes a set of node (i.e. an amino
acid residue) and edge features that describe geometric and chemical features describing a residue,
1, and its relation to another residue, j (Fig. Eh). To learn a representation for a given residue, the
network uses message passing in which messages from neighboring residues and edges are used to
update the residue representation. Here, we adapt the GVP-based graph neural network to the task of
predicting sites of cryptic pockets from a native, folded structure of a protein. As in the original paper,
we use node features including: the type of amino acid residue, sine and cosine transformations of
backbone dihedral angles, an imputed unit vector between the « and 3 carbon, and a forward and
reverse unit vector to the ¢ — 1 and ¢ + 1 neighboring residues. Edge features include a unit vector
between nodes, a distance between nodes, and a sine transformation of the distance in the protein’s
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Figure 1: Depiction of how residue level representations are calculated in the graph neural network
(a) and how residues are labelled for training (b). Node features include a one-hot encoding of residue
type, sine and cosine transformations of 3 different backbone dihedral angles (only 2 shown for
clarity), a unit vector capturing the direction of the C-a to C-$ bond, and forward and reverse unit
vectors (C-a to C-« from preceding and following residues). Edge features include a unit vector in
the direction of the neighbor, the distance to the neighbor, and a sine transformation of the distance in
sequence space.

primary sequence. We update a node of interest using its 30 nearest neighbors as done in the original
work. In the original work, protein-level predictions were made by taking the mean representation of
all residues and making a prediction. Importantly, we do not take a mean of residues, but instead
predict on residues individually.

The training data for our model comes from time windows from molecular dynamics simulations.
Specifically, we select a structure at some time-point in simulation (¢y) and the resulting structures
within the next 10 nanoseconds of simulation to calculate the maximum pocket volume increase
across the protein structures within that time window using the pocket detection algorithm LIGSITE
[8] (Fig. [Ib). LIGSITE outputs sets of “pocket grid points™ that indicate cavities on the protein
surface (i.e. points that are surrounded by protein on all sides). For all residues, we calculate how
many pocket grid points are within 5 Angstroms of the residue. We label a residue a positive example

if at some point in the time window that residue’s assigned pocket volume increases by 40 A~ (roughly
the size of an ADP molecule) relative to its volume at time ¢3. We label a residue as a negative

example if the change is less than 10 A, and we do not consider residues with intermediate values.

3 Experiments & Results

3.1 Graph neural networks accurately predict residue level pocket volume changes from
simulation data

We trained and evaluated a model using a simulation dataset of SARS-CoV-2 proteins (and related
human proteins) that consisted of 17 proteins. First, we chose 15 proteins randomly (resulting in 1,160
simulation trajectories) and split the trajectories into training and validation sets in a 90:10 split. Then,
we held out all trajectories from 2 proteins as a test set. Importantly, since the simulations provide
many different structural configurations of the proteins and because each protein has many residues,
the training set contained 1.6M training examples ( 176K positive, 1.4M negative). Our model
effectively learned to classify how the pocket volume around a residue will change over the course of
10 ns of simulation. First, we show that the model trains stably with the training and validation loss
flattening around 25 epochs (Fig. [Zh). We apply the best model (according to validation loss) to the
test set of 2 held out proteins and calculate a ROC-AUC of 0.82 (Fig. [2b). We also compare with the
3D CNN model from Torng et al.[9] which obtains an ROC-AUC of 0.64. Overlaying the ground
truth labels and predicted labels onto a random structure selected from simulation also demonstrates
the high accuracy of the model (Fig. 2Jd). Additionally, we plotted a precision-recall curve and



observe good performance (Fig. 2c). In both the ROC curve and precision-recall curve, our model
substantially outperforms a random baseline, a model that classifies residues based on whether they
are polar or nonpolar, and a model that classifies residues based on if they have secondary structure.
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Figure 2: Several metrics evaluating the model relay its ability to accurately predict cryptic pocket
opening in simulations. (a) Training and validation loss. (b) ROC curve. (c) Precision-recall curve.
(d) Predictions and ground truth labels overlaid on a random structure from simulation.

3.2 Graph neural networks accurately identify cryptic pockets from experimental
structures

To evaluate if our model can predict known sites of cryptic pockets without the need for simulations,
we applied a trained model to a new test set of experimental protein structures with known cryptic
pockets. This model was trained identical to the model from section 3.1 except it also included the 2
prior test set proteins. For the test set, we curated a set of 11 protein structure pairs that include an
apo protein (no ligand bound) and the corresponding #olo protein (ligand bound to cryptic site). We
applied our model to the 11 apo protein structures (which were not part of the training) and found that
it accurately identified the known cryptic pockets (Fig. 3} ROC-AUC=0.78). This result is slightly
better than the reported result for the related algorithm CryptoSite [1] (ROC-AUC=0.74 when not
using features extracted from simulations). However, the test sets used in the two studies are different
and a follow-up comparison with an identical test set is warranted.

AUC=0.78
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Figure 3: A graph neural network accurately predicts the locations of cryptic sites in 11 crystal
structures with known cryptic pockets. Apo structures are colored from red to blue depending on the
network’s prediction of whether pocket opening will occur at that residue. Ligands that bind cryptic
sites (shown in yellow) are superposed onto apo structures. Residues at the ligand binding site are
labelled as positive examples and shown in a stick representation in the apo structures. PDB ID’s for
the apo and holo structures are provided.



4 Conclusions & Discussion

We have shown that a graph neural network trained on protein simulation data can accurately predict
cryptic pocket opening. First, we showed that we could predict whether or not residues in a protein
will undergo structural changes that lead to increased pocket volumes over the course of 10 ns of
simulation. Next, we showed that this same model could accurately predict sites of cryptic pockets
from experimental structures without the need to run molecular dynamics simulations.

While our model can accurately predict cryptic pocket opening, there are some caveats. The highest
precision only reaches ~0.5 meaning there is likely to be one false positive for every true positive at
the lowest recall value. One explanation is that pocket formation is stochastic across 10 ns simulation
windows. Even with the exact same starting structural configuration, a residue can sometimes form a
pocket in 10 ns, and sometimes not. Therefore, many of the false positives called by our model may
actually be residues that do sometimes form cryptic pockets in other 10 ns windows.

It may be surprising that our model can predict sites of cryptic pocket opening from experimental
structures given that the model was not trained to perform this task. Nonetheless, we find that a
model trained to predict how pocket volumes change in protein structures over the course of 10
ns of simulation is transferable to the more challenging task of predicting cryptic pocket opening
from experimental structures. Given that success on the former task begets success on the latter
task, this suggests that 10 ns of simulation time may be a sufficient amount to sample at least partial
cryptic pocket openings with molecular dynamics simulations. This is encouraging since, historically,
simulations to discover cryptic pockets usually consumed far more resources (100s of GPU hours).

This work represents an encouraging proof-of-concept and should be improved by access to more
simulation training data on a larger set of proteins, as well as, better model selection, which can come
from a hyperparameter search to find the best model.
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