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Abstract

Many different types of generative models for protein sequences have been pro-
posed in literature. Their uses include the prediction of mutational effects, protein
design and the prediction of structural properties. Neural network (NN) archi-
tectures have shown great performances, commonly attributed to the capacity to
extract non-trivial higher-order interactions from the data. In this work, we ana-
lyze three different NN models and assess how close they are to simple pairwise
distributions, which have been used in the past for similar problems. We present
an approach for extracting pairwise models from more complex ones using an
energy-based modeling framework. We show that for the tested models the ex-
tracted pairwise models can replicate the energies of the original models and are
also close in performance in tasks like mutational effect prediction.

1 Introduction

While generative models for protein sequences promise a rich field of applications in biology and
medicine [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], the question of what information they extract from the sequence
data has received less attention. This is, however, a very interesting field of research since especially
the more complex models might extract non-trivial higher-order dependencies between residues. This
in turn might reveal interesting biological insights.

Some recent works address this interpretability issue. In Ref. [11], the authors introduce the notion
of pairwise saliency and use it to quantify the degree to which more complex models learn structural
information and how this relates to the performance in the prediction of mutational effects. Ref. [12]
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instead constructs pairwise approximations to categorical classifiers and showcases applications to
models trained on protein sequence data.

In this work, we ask how close trained neural network (NN) based models are to the manifold of
pairwise distributions. To this end, we train three different architectures on protein sequence data.
Interpreting these models as energy-based models [13], we present a simple way to extract pairwise
models from them and analyze errors in energy between extracted and original models. We show
that the subtle question of gauge invariance is important for this purpose and address this invariance
ambiguity using different objective functions for the extraction.

2 Methods

2.1 Protein Sequences and Energy-Based Models

We represent the aligned primary structure of a protein domain of length N as a sequence s =
(s1, . . . , sN ), where we identify every possible amino acid with a number between 1 and q. Our input
data are sets of evolutionary related sequences gathered in multiple sequence alignments (MSAs).

Energy-based models (EBMs) [13] are models that specify the negative unnormalized log-probability
Eθ(s), for example by a neural network with weights and biases represented by θ. While the
calculation of the exact probability p(s) = e−Eθ(s)/Zθ is intractable since the normalization constant
Zθ is a sum over qN terms, numerous ways of training such models have been developed.

In this work, we use the fact that any probability p(s) can be thought of as an EBM by defining
E(s) = − log p(s). We will use the term energy for both cases: when derived from a distribution
p(s), which is typically normalized, and when given by an explicit energy function, which is typically
not normalized.

2.2 Energy Expansions and Gauge Freedom

We call I = {1, . . . , N} the set of all positions in the sequence s and sL the subsequence consisting
of amino acids at positions in L ⊆ I . Then, we can expand any energy E(s) as

E(s) =
∑
L⊆I

fL(sL), (1)

where fL is a function depending only on the amino acids at positions at L. Models for which fL = 0
for |L| > 2 are called pairwise models (or Potts models) and their energy can be written as a special
case of Eq. 1 as

Epw(s) = −
N∑
i=1

N∑
j=i+1

Jij(si, sj)−
N∑
i=1

hi(si)− C, (2)

with J being commonly called couplings and h the fields [14]. The constant C is typically not added
to the model definition since it does not change the corresponding probabilities, but we keep it in
order to be consistent with the generic expansion in Eq. 1.

The expansion in Eq. 1 is not unique and additional constraints can be imposed to fix the expansion
coefficients (gauge fixing). A common route is to impose the so-called zero-sum gauge [12], which
aims to shift as much of the coefficient mass to lower orders as possible (see, e.g., Ref[12] and
Appendix B.2). We will show that the question of gauge is crucial for understanding the structure of
the fitness landscape induced by the NN models.
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2.3 MSE Formulation

We formulate the problem of extracting a pairwise model from more general models by using a loss
function L that measures the average mean squared difference between energies with respect to a
distribution D over sequences. We use the loss

L(c, h, J) = Es∼D
[(
EM (s)− Epw(s)

)2]
, (3)

where Epw(s) is the energy of a pairwise model described in Eq. 2 and EM (s) is the energy of the
original model. We minimize the loss function with respect to h, J and C and use the resulting
pairwise model as an approximation to EM .

The distribution D is central in this formulation of the problem and is closely related to the question
of gauges. It can be shown that if D is the uniform distribution over sequences, the minimizer of
L(c, h, J) is equivalent to the pairwise part of EM in the zero-sum gauge (see Appendix B for a
proof). By changing D it is possible to give more weight to these regions and construct a pairwise
model that might be worse in replicating EM globally, but better in regions of interest. This is
equivalent to extracting the pairwise interactions in a different gauge of EM .

A natural candidate for D is the distribution induced by EM , leading to pairwise models that aim to
reproduce the original distribution well on typical sequences of that distribution. With this choice,
the loss corresponds to an f -divergence (f(t) = log2(t)) in the unnormalized distribution space [15].

3 Results

3.1 Extraction of Fourier Coefficients

We train three different probabilistic models (the autoregressive architecture presented in [5] (ArDCA),
an energy based model expressed by a multi-layer perceptron with a single hidden layer (MLP) and a
variational autoencoder [8] (VAE), on five different MSAs taken from [3]. We prepare samples from
the uniform distribution and the model distribution and calculate their energies for all models and
minimize the loss in Eq. 3 using these samples (see Appendix A.2 for details of the models and the
training procedure).

3.2 Energy Errors

In Fig. 1 we show the error in the energies of extracted pairwise models with respect to the energies in
the original models. We use two different distributions D in Eq. (3) for sampling the sequences used
for the extraction of the pairwise models: U stands for the uniform distribution; M for the distributions
of the original trained models. The error in the plot is the mean squared error, normalized by the range
(see Appendix A.1). For all models, the error drops by several orders of magnitude when using the
model distribution M for extraction instead of the uniform distribution U. However, for ArDCA the
error is already considerably smaller than for the other models when using the uniform distribution,
which can be taken as evidence that this model is close to a pairwise distribution after training. The
MLP and VAE on the other hand, show very large errors when using the uniform distribution. This
can be taken as evidence that these models are not pairwise models globally, but close to pairwise in
the space of sequences on which the models are typically used.

3.3 Mutational Effect Prediction using Extracted Models

The prediction of mutational effects is a typical field of application for the type of models analyzed
in this work. In Fig. 2 we show the Spearman correlations between the experimental data and the
energies in the original models (O), the energies of models extracted using samples from a uniform
distribution (U) and the energies extracted from the original model distribution (M). There is no clear
tendency with respect to the relative performance of the original and the extracted models. This is
evidence that most of the explanatory power of the original models can be reproduced by simpler
pairwise models, even though the exact distribution used for extraction does not seem to be important.
This indicates that only coarse features in the energy are used in this prediction task.
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Figure 1: Errors in energies of the extracted
pairwise models with respect to the original
models. The three columns correspond to the
three different models tested (ArDCA, MLP and
VAE). The colors indicate which dataset is tested:
Train data (green), test data (orange) and data
from the mutational assays (blue). The markers
distinguish the different protein families tested.
Within every column, the left (U) corresponds
to pairwise models extracted with samples from
the uniform distribution, the right (M) to pairwise
models extracted with samples from the distri-
bution of the original models. The error shown
is the normalized root-mean squared error (see
Appendix A.1). Note the logarithmic scale.
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Figure 2: Spearman Correlation with experi-
mental data of original (O) and extracted mod-
els (U, M). Every plot corresponds to a combina-
tion of original model type (ArDCA, MLP and
VAE) with a mutational assay. Shown is the Spear-
man rank correlation between the experimental
data and the energies of the original model (O),
the model extracted using samples from a uni-
form distribution (U) and using samples from the
original model distribution (M).
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Figure 3: Contact prediction using extracted models Contact predictions vs. ground truth for the
top N = 30 predicted contacts for models extracted from ArDCA, the VAE and the MLP. Horizontal
and vertical axes show positions. True contacts are grey, true positives are green and false positives
are red. In the three right plots, the upper parts show the contacts for models extracted with the
uniform distribution, the lower parts show the same for models extracted with the original model
distribution. The left-most plot shows the contact predictions for ArDCA from the original method in
[5].

3.4 Contact Prediction

Given that the extracted models are pairwise models, we can use standard methods from this field
to predict structural contacts [14, 16] (see Appendix A.3). For ArDCA, the contact predictions for
these two methods of extraction are largely the same, and also very similar to the predictions from the
original method. This is consistent with the idea that ArDCA is very similar to a pairwise model. The
predictions for the MLP are also very similar between the two methods and the overall performance
is worse than ArDCA. The results for the VAE are similar, indicating that the VAE and the MLP are
either not relying on structural information for predicting mutational effects or our method is not able
to extract this information. We note similar results in [11].
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4 Discussion

In this work, we provide evidence that the neural network based generative models for protein
sequences analyzed by us can be approximated well by pairwise distributions. The autoregressive
architecture on which ArDCA is based seems to be closest to a pairwise model after training. For the
MLP and the VAE, the results seem to indicate that while these models are less well approximated by
a pairwise model globally, their pairwise projection is a very close approximation in the part of the
sequence space in which they are typically used, close to the data manifold.

We cannot of course exclude that the neural network models tested by us do extract some meaningful
higher-order interactions from the data, but the results seem to indicate that their effect is rather subtle.
This suggests that the general strategy outlined in [17], where the pairwise part of the model is kept
explicitly and an universal approximator is used for extracting higher-order interactions, might be
promising.

Several interesting further lines of research suggest themselves. While the general idea of approx-
imating a pairwise distribution over fixed-length sequences to models trained on unaligned data
(like recent very large attention-based models [18]) seems to be ill-defined, the approach of locally
extracting a pairwise model highlighted in this work might still be feasible. Another interesting
question is whether sparse higher-order interactions can be efficiently extracted from neural network
based models. It is for example possible that methods like the Goldreich-Levin algorithm [19] might
be adapted for pseudo-boolean functions based on generative models for protein sequence data.
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A Methods

A.1 Energy Error

We measure the error in energies in the extracted models with respect to the energies in the original
models using the normalized root-mean square deviation, i.e.

error =
1
M

∑M
m=1

(
EM (sm)− Epw(sm)

)2
maxmEM (sm)−minmEM (sm)

, (4)

where {sm}Mm=1 is the set of sequences on which we calculate the error, EM is the energy of the orig-
inal model, Epw the energy of the extracted pairwise model and maxmE

M (sm) and minmE
M (sm)

are the maximum and minimum energies of the original model on the dataset.

A.2 Models and Sampling

A.2.1 ArDCA

The model used in ArDCA [5] decomposes the probability p(s) of a sequence of amino acids as

p(s) =

N∏
i=1

p(si|s<i), (5)

where si is the amino acid at position i and s<i are the amino acids that come before i in the ordering.
The conditional probability p(si|s<i) is then defined as

p(si|s<i) =
exp

(
hi(si) +

∑i−1
j=1 Jij(si, sj)

)
zi(s<i)

(6)

where zi(s<i) is the sum of the denominator over all possible values of s<i. We use the code by the
authors for training the model and calculating log p(s) for the samples used for extraction. Training
was done with sequence reweighting as implemented by the authors of [5].

A.2.2 MLP

The MLP is a simple feed-forward network with one hidden layer of size H . The energy EMLP for
sequence s is calculated as

EMLP (s) =

H∑
k=1

W 2
k f

(
Nq∑
i=1

W 1
kiŝi + bk

)
(7)

where ŝ is a one-hot encoding of the sequence s, W 1 and W 2 are a weight matrix and a weight
vector respectively, and b is the bias vector. The activation function f was chosen as the leaky ReLU
[20]. We used H = 64 hidden units, a L2 regularization of 0.001. The training was done using
Pseudolikelihoods inspired by [16]. See [17] for the definition of the loss function when using EBMs
on proteins. We did not use sequence reweighting [14] for the MLP. Training was done for 200
epochs. After training, the energy can be calculated using a single forward pass. For sampling from
this model, we resorted to standard MCMC techniques [21]. Since we have to evaluate the energy
a large number of times during sampling, we used a very small number of MC sweeps (MC steps
divided by the length of the sequence) for thermalization (1000 sweeps) and sampling (every 5 MC
sweeps after thermalization). While this certainly does not lead to high-quality samples, we note that
we are only interested in biasing the extraction towards sequences more typical of the distribution.
The model was implement in PyTorch [22].
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A.2.3 Variational Autoencoder

The model and code we use is based on the work and implementation of [8]. For a more detailed
introduction to the variational autoencoder we refer to the original work [23]. Both encoder and
decoder use a single hidden layer with 100 hidden neurons and tanh activations. The dimension of
the latent space is 20. During training, an L2 regularization of 0.1 was used and the training was run
for 10000 epochs. Following the implementation of [8], we used full-batch gradient descent with and
Adam optimizer.

The probabilities were estimated using importance sampling [24] using 1000 ELBO samples. Training
was done with sequence reweighting as implemented by the authors of [8].

A.2.4 Extraction

We use 107 samples from the uniform and 107 samples from the original model distributions af-
ter training for extracting the pairwise models. The samples are drawn independently for each
combination of original model and dataset.

For the samples from the model distributions, we minimize the loss in Eq. 3 using a batch size of
10000 and the Adam optimizer [25]. We keep a running average l of the loss function using the
equation lk = α lk−1 + (1 − α)Lk with the initial condition l1 = L1 where Lk is the loss after
gradient step k and lk is the running average of the loss after gradient step k. We set α = 0.1 and
stop optimization if the running average has not reached a new minimum for 1000 gradient steps.
The extraction runs in seconds to minutes on an Nvidia RTX 2080 GPU.

For samples from the uniform distribution, the minimizer of the loss in Eq. 3 can be calculated
directly from the samples without gradient descent (see Appendix B). We use the same number of
samples to approximate the conditional energy expressions in Eq. 13 this case.

A.3 Contact Prediction

We use standard methods for contact prediction from pairwise models, following mainly [16]. We
transform the extracted pairwise models into the zero-sum gauge and calculate the Frobenius norm
of the q − 1× q − 1 submatrices Jij corresponding to the pair of positions i and j (we do not sum
over gap states, hence q − 1 instead of q). We apply the average-product correction [26] and sort
the positions pairs by the resulting score, excluding pairs for which abs(i− j) < 5. We map PDB
1PIN:A [27] to the MSA and use it to differentiate contacts from non-contacts (8 Å, Heavy-Atom
criterion [14]).

B Zero-Sum Gauge

In the following we prove that the pairwise model Epw corresponding to the minimizer of Eq. 3 is
equivalent to the pairwise part of EM in the zero-sum gauge when using the uniform distribution D
for extraction.

B.1 Notation

We denote by A = {1, .., q} the (numeric) alphabet of the q possible amino acids. The terms
fL : A|L| → R in the general expansion in Eq. 1 are functions mapping sequences of amino acids
of length |L| to a real number, where L ⊆ I = {1, . . . , N} is a subsequence of positions. In this
notation, the pairwise model we train using the loss in Eq. 3 can be written as

Epw(s) =

N∑
i=1

N∑
j=i+1

fpwij (si, sj) +

N∑
i=1

fi(si) + f∅. (8)

In Eq. 2 we use a different notation for the pairwise model, but in this Appendix we decide to keep
all notations compatible with the generic expansion in Eq. 1. The notations can be connected by
identifying fpwi (a) := −hi(a), fpwij (a, b) := −Jij(a, b) and f∅ := −C for arbitrary amino acids a
and b.
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Equivalently we define fML : A|L| → R as the interaction coefficients between the sites belonging to
the set of positions L ⊆ I in EM in a certain gauge.

We will use fL(aL) in order to denote a specific interaction coefficient for a fixed sequence of amino
acids aL of length |L|, for both pairwise models and models with higher-order interactions. We will
use fpw to denote the set of all parameters of the pairwise model and fM for the set of all parameters
of the original model.

B.2 Zero-Sum Gauge

The zero-sum gauge is a reparameterization of the interaction coefficients which leaves the energy
invariant (see also Ref. [12] who discuss this gauge). In this gauge, if |L| > 0, summing fL(aL)
over any of the amino acids in aL while keeping the others fixed is 0. It can be applied both to the
parameters of the extracted pairwise model fpw and the parameters fM of the original model. Since
the sum over an amino acid is proportional to the expectation of fL(aL) when the corresponding
amino acid is sampled uniformly, this condition can be written as

Es∼U [fL(sL)|sJ = aJ ] = 0 ∀ J ⊂ L, (9)

where Es∼U [fL(sL)|sJ = aJ ] the expectation of fL(sL) if the subsequence sJ is fixed to aJ . Any
model can be transformed into the zero-sum gauge using the identity fL(aL) = (fL(aL)− f̂L(aL))+
f̂L(aL) with

f̂L(aL) :=
∑
J⊆L

(−1)|J| 1

q|J|

∑
aJ

fL(aL). (10)

It is easy to show that f̂(aL) satisfies the condition in Eq. 9 and that faL(aL)− f̂aL(aL) contains
only interactions of order strictly less than |L|. Therefore, any model can be transformed into the
zero-sum gauge by first applying the transformation to the interaction coefficients at the highest order
N = |I|. This will lead to interaction coefficients at order N that satisfy the condition in Eq. 9
and new interaction coefficients of order lower than N . These can be absorbed in the interaction
coefficients in the lower orders of the expansion. Repeating this procedure at N − 1, then at N − 2
etc. leads to a final model where all interaction coefficients of all orders satisfy the condition in Eq. 9.

Since the expansion of EM has exponentially many interaction coefficients in general, this procedure
has no practical use in our setting. However, in the next Section we show that the lower orders of
EM in the zero-sum gauge representation can be extracted with a simple sampling estimator.

B.3 Proof of Equivalence of Minimizer of Loss and Zero-Sum Gauge

The partial derivative of the loss in Eq. 3 with respect to a parameter fpwL (aL) in the pairwise model
(note that |L| ≤ 2 in this case) can be written as

∂L(fpw)
∂fpwL (aL)

= 2 Es∼U
[(
Epw(s)− EM (s)

) ∂Epw(s)
∂fpwL (aL)

]
. (11)

Setting the gradient to 0 leads to

Es∼U [EM (s)|sL = aL] = Es∼U [Epw(s)|sL = aL] ∀L : |L| ≤ 2 (12)

which means that the minimisation of the loss with respect to the parameters of the pairwise model is
equivalent to fitting the conditional expectation of the energy under uniform distribution up to the
second order of the expansion.

Since the loss in Eq. 3 is invariant with respect to a gauge change in the pairwise model Epw, we
can assume without loss of generality that we extract the pairwise model in the zero-sum gauge
representation. Using a hat to denote the parameters f̂pw of the pairwise model in this specific gauge,
it is easy to see from Eq. 8 and the condition in Eq. 9 that

9



Es∼U [Epw(s)] = f̂pw∅

Es∼U [Epw(s)|si = a] = f̂pwi (a) + f̂pw∅

Es∼U [Epw(s)|si = a, sj = b] = f̂pwi,j (a, b) + f̂pwi (a) + f̂pwj (b) + f̂∅.

Combining this with Eq. 12 we get at the minimum of the loss the conditions

Es∼U [EM (s)] = f̂pw∅

Es∼U [EM (s)|si = a] = f̂pwi (a) + f̂pw∅

Es∼U [EM (s)|si = a, sj = b] = f̂pwi,j (a, b) + f̂pwi (a) + f̂pwj (b) + f̂∅.

(13)

Similar to the pairwise model, we will use a hat to denote the parameters f̂M of the model EM in the
zero-sum gauge. While the corresponding expansion

EM (s) =
∑
L⊆I

f̂ML (sL)

has interaction coefficients of all orders, we can again use the conditions in Eq. 9 to arrive at

Es∼U [EM (s)] = f̂M∅

Es∼U [EM (s)|si = a] = f̂Mi (a) + f̂M∅

Es∼U [EM (s)|si = a, sj = b] = f̂Mi,j (a, b) + f̂Mi (a) + f̂Mj (b) + f̂∅.

Taking these relations together leads to the minimizer condition

f̂pwL = f̂ML ∀L : |L| ≤ 2

which means that the Epw minimizing the loss in Eq. 3 is the pairwise part of EM in its zero-sum
gauge representation. Note that the loss is still invariant with respect to a gauge change in the
extracted pairwise model, so the extracted model can be in any gauge representation.

We also note that Eqs. 13 can be used to estimate the coefficients of the extracted pairwise model
directly using uniform samples and the corresponding energies from the original models in order to
approximate the expectations.
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