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Abstract

Protein engineering has become an important field in biomedicine with application
in therapeutics, diagnostics and synthetic biology. Due to the complexity of protein
structure de novo computational design remains a difficult problem. As helices are
an abundant structural feature and play a vital role in determination of the protein
structure, full atom de novo computational design for helices would be an important
step. Here, we apply Wasserstein bi-directional Generative Adversarial Networks to
generate full atom helical structures. To design for structure or function, we allow
the design according to structural constraints and introduce a novel Markov Chain
Monte Carlo search mechanism with the encoder such that the generated helices
match target "hotspot" residues structures. Our model generates helices matching
well to the target hotpots (within 3 Å RMSD) and with near-native geometries for a
large fraction of the test cases. We demonstrate that our approach is able to quickly
generate structurally plausible solutions, bringing us closer to the final goal of full
atom computational protein design.

1 Introduction

Computational protein design holds enormous promise for protein engineering and biomedicine.
While deep learning has been successesful at protein structure prediction [6], computational design
of novel proteins remains difficult due to the complexity and the intricate functionality of protein
structures [8, 12]. Helices are the most commonly occurring secondary structure of proteins, imparting
stability, and representing 30% of the structure of the average globular protein [9, 10]. Full atom
de novo computational design for helices would be an important first step towards computational
protein design; with current forcefield based methods, exact design of helices is still lacking. In
other words, discovering novel, non-native helix structures could directly facilitate the design of
new proteins. While the Protein Data Bank (PDB) offers a relatively large repertoire of native helix
structures (roughly 3 million helices), it is still a small fraction of possible stable helices. One
potential solution is to train deep generative models on the PDB to create novel helices. In order
to be useful designs, these helices need to fit certain structural design parameters such as fitting
into certain binding pockets or novel structural elements. We express these parameters as "hotspot"
residues which the designs will aim to match structurally as closely as possible; it is known that in
real proteins, such hotspot residues mediate target binding, recognition, and receptor activation [3].
The target hotspot residues are mostly identified by experiments [3]. Given identified target hotspots,
our research focuses on solving a generative design problem with constraints where the generated
helices are as structurally close to the provided hotspot residues as possible. We could apply such
hotspot based helix generation to generate novel helices to bind certain pockets as receptor agonists
or inhibitors, or to generate "mirror image" peptides with many improved properties as therapeutics.
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In computational biology, generative methods have been increasingly used to generate realistic data
due to their ability to discern patterns from massive complex datasets and create synthetic data with
desired properties[5, 7]. Generative Adversarial Networks (GANs) are a recently developed class
of generative models that have found wide adoption in biology. In 2017, Killoran et al. [7] applied
Wasserstein GANs to produce generic DNA sequences. The Wasserstein GAN is a widely-used
variant of the GAN, and it reduces the Earth Mover (Wasserstein) distance between real data and
generated data[1]. In 2019, Gupta and Zou [5] proposed a feedback GAN using external function
analysers to gradually update the training data to produce DNA with desired properties. In 2021,
Repecka et al. [11] developed a GAN model called ProteinGan utilizing convolution and attention
layers to produce novel protein sequences with the favored physical property like enzymatic activity.
Here, instead of working strictly on sequences, we focus on full atom structures and present a
Wasserstein bi-directional Generative Adversarial Network (WBIGAN) full-atom model with a
Markov chain Monte Carlo (MCMC) search mechanism to generate our desired helical structures
that fit hotspot constraints.

Our work is the first step towards full atom protein design using generative methods. The main
contributions of this paper are that (i) we developed a generative full-atom model using WBIGAN to
estimate the distribution of helical structures in a way that is invariant to translation and rotation, and
(ii) a MCMC search mechanism to optimize the generated data for desired structural properties as
way to perform generation under constraint.

2 Methods

2.1 Database Construction and Encoding

The PDB stores over 100,000 protein structures and is a key resource for structural biologists. Our
method captures all helices from the PDB to build our helical database. There are around 3 million
helical structures in our database. The database is further divided into training and test datasets. We
filtered the test dataset to ensure data in the test set is no more than 42.8% sequence identity compared
with any data in the training set. The hotspot residues are problem specific and are usually no more
than three or four residues[3]. To test our model performance with low cost, the hotspot residues are
randomly selected on the test dataset to mimic experiments. We randomly selected three hotspots on
each test case and saved their structures as the target hotspot residues. In total we prepared 3118 test
samples as the test set.

Regarding encoding, the principle is to make the structure invariant to translation and rotation.
Therefore, 3D Cartesian coordinates can not be directly encoded, and we utilize internal coordinates
like angles to represent the structure. We developed a novel encoding method where the helices are
encoded as the combined vectors of the primary sequence and structural information. The one-hot
encoding method is utilized for the amino acid sequences. With respect to geometry, the structure is
divided into mainchain and sidechains. As demonstrated in the Figure 1, the mainchain is represented
as phi, psi, omega, and bond angles while the sidechain is represented using 5 chi angles. In the end,
all information is concatenated together as the encoded vectors.

Figure 1: Encoding: the helix is encoded as the combined vectors of the primary sequence information
and structural information. The structural information is further divided into sidechain and mainchain.
The mainchain is represented as phi (ϕ), psi (ψ), omega (ω) and bond angles while the sidechain is
represented using 5 chi (χ) angles.
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2.2 GAN Model Architecture

GAN is a powerful framework for learning arbitrarily complex data distributions. A GAN is composed
of two modules: a generator, to generate data from latent space, and a discriminator, to distinguish
whether the input data is real or not. Compared with vanilla GAN, bidirectional GAN (BIGAN)
[2] has a third module called encoder which maps data x to latent representations z. We utilize
this encoder module to have a starting point in latent space for our MCMC search mechanism.
The Wasserstein BIGAN (WBIGAN) is a variant of the BIGAN which minimizes the Earth Mover
(Wasserstein) distance between the distribution of real data and the distribution of generated data
[1]. A gradient penalty is imposed for gradients above one in order to maintain a Lipshitz constraint
[4]. WGANs have been demonstrated empirically helpful to stabilize the GANs’ training process.
The loss of our model is as shown in Equation 1. Our developed GAN model utilized the WBIGAN
architecture with gradient penalty. The architecture of the model is as shown in Figure 2(a). When
sampling from the generator, the argmax of the probability distribution is taken to output a single
amino acid at each position with other internal coordinate features to construct the structure.

D loss =
∑

z∈p(z)D(G(z), z)−
∑

xD(x,E(x)) + λ ∗ Gradient Penalty
where Gradient Penalty =

∑
z∈p(z)(∥∇G(z)D(G(z), z)∥2 − 1)2

EG loss =
∑

xD(x,E(x))−
∑

z∈p(z)D(G(z), z)

(1)

2.3 MCMC Search Mechanism with Encoder

After model training, we developed a MCMC search mechanism to generate the data matching our
desired target hotspots. The MCMC search method we used is called simulated annealing and it could
obtain approximate global optimization in a large search space for an optimization problem[13]. Our
optimization problem is to minimize the RMSD between the target hotpots and matching residues
in valid generated data. Regarding MCMC search, a well-chosen starting point is critical since it
can avoid getting stuck in some local minima and efficiently save run time. We utilized the encoder
module, mapping data into latent space, from trained WBIGAN to produce a starting point. Our
trained encoder would take the target hotspot residues and convert it into a starting point in latent
space. Regarding our approach, the starting point is firstly converted to the helical structure by our
model to calculate the RMSD. After that, a random neighbor move from that point would be given
to the model to update the RMSD. If the RMSD is smaller, the move will be accepted. Otherwise,
a probability function P = e(RMSD−RMSD

′
)/T is utilized to decide whether to take the move. The

process would be repeated until meeting the termination condition. Figure 2(b) is the flowchart to
summary the whole process. Overall, the model is firstly trained on helical database and then the
MCMC search is performed to search in latent space of our model to generate the desired helices.

(a) Model Architecture (b) Overall Flowchart

Figure 2: Model Architecture, and overall flowchart (a): The model contains three modules:
generator, discriminator (crtics) and encoder. The modules are largely composed of ConvBlocks
which include Relu activation and Conv1d layers. (b):The flowchart for our approach; training the
WBIGAN model and then implementing the MCMC search on the latent space of trained WBIGAN

3 Results and discussion

We evaluated the quality of our generated helices according to an independent scoring metric and
how well they matched the target hotspot residues. The Rosetta score, a widely used physics-based
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energy function, was utilized as an indication of the data quality. Figure 3 (a) shows the Rosetta score
distribution of the training data and the generated data; while generated helices clearly contain a
large fraction of physically reasonable helices (with low Rosetta score), the generated data contains a
wider range of Rosetta score distribution compared with training data. Figure 3(b) demonstrates the
data distribution between generated data and training data where Rosetta score is smaller than 100.
Note that additional filtering using the Rosetta score would be possible as it is a fully independent
measure. We also examined the PCA of the CA atom coordinates of the backbone, showing that the
generated helices are broadly similar, but also filling out a slightly different conformational space in
Figure 3 (c). In addition, Figure 3 (d) illustrates the Ramachandran plots (ϕ and ψ angles) for the
generated data and the training data. Over all, the model could generate the reasonable structures
with the similar distribution as training data.

To test the performance of generating novel helices matching desired target hotspot residues, we
evaluated our MCMC Search Mechanism with trained WBIGAN model on the prepared test set. As
shown in figure 3(e), the pie chart summarizes the RMSD regarding hotspots between generated data
and target hotspots within the limited time. In almost a quarter of the test cases the desired helices
were within 2 Å RMSD compared with the target hotspots, so matching very closely, with another
47.6% matching within 3 Å. Figure 3(f) is the Rosetta score distribution regarding the generated
helices for test cases. In summary, our method could largely generate high-quality helices with
considerably small distance from the given target hotspots.

The performance tests demonstrate that our model generated physically reasonable novel helices
and our approach is able to generate helices matching hotspot residues through the MCMC search
mechanism. The future work would be to combine our model with reinforcement learning or other
folding algorithms to produce the novel protein structure at atomic resolution.

(a) Rosetta score distribution 1 (b) Rosetta score distribution 2 (c) PCA

(d) Ramachandran plot (e) Overall RMSD result (f) Generated Rosetta distribution

(g) Visualization example

Figure 3: Results (a): The Rosetta score distribution between training data and generated data. (b):
The Rosetta score distribution where the score is smaller than 100. (c): PCA regarding the CA atom
coordinates in backbone. (d): Ramachandran plot on phi, psi angles regarding generated data and
training data. (e): RMSD summary for all test cases (f): The generated Rosetta score distribution for
all test cases (g): A visualization example about our approach
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