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Abstract

Successful development of monoclonal antibodies (mAbs) for therapeutic appli-
cations is hindered by developability issues such as low solubility, low thermal
stability, high aggregation, and high immunogenicity. The discovery of more
developable mAb candidates relies on high-quality antibody libraries for isolating
candidates with desirable properties. We present Immunoglobulin Language Model
(IgLM), a deep generative language model for generating synthetic libraries by
re-designing variable-length spans of antibody sequences. IgLM formulates anti-
body design as an autoregressive sequence generation task based on text-infilling
in natural language. We trained IgLM on approximately 558M antibody heavy-
and light-chain variable sequences, conditioning on each sequence’s chain type and
species-of-origin. We demonstrate that IgLM can be applied to generate synthetic
libraries that may accelerate the discovery of therapeutic antibody candidates.

1 Introduction

Antibodies have become popular for therapeutics because of their diversity and ability to bind antigens
with high specificity [38]. Traditionally, monoclonal antibodies (mAbs) have been obtained using
hybridoma technology, which requires the immunization of animals [33]. In 1985, the development
of phage display technology allowed for in vitro selection of specific, high-affinity mAbs from
large antibody libraries [22, 34, 13]. Despite such advances, therapeutic mAbs derived from display
technologies face issues with developability, such as poor expression, low solubility, low thermal
stability, and high aggregation [41, 16]. Display technologies rely on a high-quality and diverse
antibody library as a starting point to isolate high-affinity antibodies that are more developable [3].

Synthetic antibody libraries are prepared by introducing synthetic DNA into regions of the antibody
sequences that define the complementarity-determining regions (CDRs), allowing for man-made
antigen-binding sites. However, the space of possible synthetic antibody sequences is very large
(diversifying 10 positions of a CDR yields 2010 ⇡ 1013 possible variants). To discover antibodies
with high affinity, massive synthetic libraries on the order of 1010–1011 variants must be constructed,
often containing substantial fractions of non-functional antibodies [3, 33].

Recent work has leveraged natural language processing methods for unsupervised pre-training
on massive databases of raw protein sequences for which structural data is unavailable [31, 10].
Prihoda et al. trained an immunoglobulin-specific language model on human antibody sequences
for humanization [26]. For sequence generation, autoregressive generative models have been trained
for designing novel protein sequences [20] or nanobodies [32]. However, because these generative
models are unidirectional, they cannot be used to re-design segments within a given antibody sequence
that may be constrained by subsequent sequence context. We present Immunoglobulin Language
Model (IgLM), which leverages bidirectional context for designing antibody sequence spans of
varying lengths while training on a large-scale antibody dataset. We show that IgLM can generate
full-length antibody sequences conditioned on chain type and species-of-origin. Furthermore, IgLM
can diversify loops on an antibody to generate high-quality synthetic libraries that display biophysical
properties consistent with those of natural antibody sequences while displaying lower immunogenicity
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and more humanness compared with naive baselines. This demonstrates that IgLM can be used
to generate synthetic libraries with favorable properties, accelerating the discovery of therapeutic
antibody candidates.

2 Problem formulation

Designing spans of amino acids within an antibody sequence can be formulated as an infilling task
similar to text-infilling in natural language. Given an antibody sequence A = (a1, ..., an) where ai
represents the amino acid at position i of the antibody sequence, to design a span of length m starting
at position j along the sequence, we first replace a span of amino acids S = (aj , ..., aj+m�1) within
A with a single [MASK] token to form a sequence A\S = (a1, ..., aj�1, [MASK], aj+m, ..., an). To
generate reasonable variable-length spans to replace S given A\S , we seek to learn a distribution
p(S|A\S).

We follow the Infilling by Language Modeling (ILM) framework proposed by Donahue et al. to
learn p(S|A\S) [8]. For generating the model input, we first choose a span S and concatenate A\S ,
[SEP], S, and [ANS] (Fig. 1). We additionally prepend conditioning tags cc and cs to specify the
chain type (i.e. heavy or light) and species-of-origin (e.g. human or mouse) of the antibody sequence
respectively to form our final sequence X:

X = (cc, cs, a1, ..., aj�1, [MASK], aj+m, ..., an, [SEP], aj , ..., aj+m�1, [ANS]) (1)
We then train a generative model with parameters ✓ to maximize p(X|✓). Using the chain rule,
p(X|✓) can be decomposed into a product of conditional probabilities:

max
✓

p(X|✓) = max
✓

Y

i

p(Xi|X<i, ✓) (2)

As our generative model, we use a modified GPT-2 Transformer decoder architecture as implemented
in the HuggingFace Transformers library (Appendix A.1) [40, 27]. The model is trained on 558M
sequences taken from the Observed Antibody Space database (Appendix A.2). During training,
spans are randomly chosen to be masked out for each sequence, allowing the model to learn to infill
arbitrary spans within each sequence (Appendix A.3).

Figure 1: (Left) IgLM formulates antibody design as a sequence-infilling problem based on the ILM
framework, with red residues denoting the span to be infilled. (Top right) IgLM input layer residue
embeddings cluster to reflect amino acid biochemical properties, visualized with t-SNE. (Bottom
right) Average infilling perplexity when scanning across human heavy- and light- chain sequences.

3 Results

3.1 Model evaluation

We evaluated IgLM as a language model by computing the per-token perplexity for infilled spans
within each antibody sequence in the dataset, which we term the infilling perplexity. Computing the
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infilling perplexity is equivalent to taking the per-token perplexity across all tokens after the [SEP]
token for each sequence in the dataset. On a held-out test set, IgLM achieved an average infilling
perplexity of 1.53 when masking out randomly selected spans, whereas a baseline that samples amino
acids and the [ANS] token uniformly at random would have a perplexity of 21 (Appendix A.4).

Because antibody sequences are more variable in the CDRs, we expect perplexity to be higher
when infilling the CDRs compared with the highly conserved framework regions. To examine the
dependence of infilling perplexity on span position along each sequence, we slid a mask of length
10 across each sequence and computed the infilling perplexity for each mask position. Fig. 1 shows
infilling perplexity as a function of mask position averaged across 205,909 human heavy-chain and
light-chain test set sequences. As expected, the model achieves low perplexity when infilling highly
conserved framework regions but has higher perplexity near the CDRs.

We also examined IgLM’s input layer embeddings, which are shared with the model’s output layer
embeddings. When visualized in two-dimensional space via t-SNE, IgLM’s amino acid embeddings
cluster to reflect known biophysical properties, demonstrating that IgLM can learn meaningful
representations of residues through the self-supervised infilling task (Fig. 1).

Figure 2: (Top left) Conserved disulfide bridges (red) and tryptophan (blue) in antibody generated
with T = 0.8. (Top middle) Average sequence identity to the top BLAST hit decreases as sampling
temperature increases, with error bars denoting a 95% confidence interval. (Top right) A disulfide
bridge between the CDR1 and CDR3 loops can be observed in structural predictions for IgLM-
generated nanobodies. (Bottom) ColabFold structural predictions of paired human heavy- and
light-chain sequences generated by IgLM at different sampling temperatures [23]

.

3.2 Full antibody sequence generation

With IgLM, we generated full antibody sequences while conditioning on the chain-type and species-
of-origin (Appendix A.5). IgLM-generated human heavy chains and human light chains displayed
high average sequence identity to previously identified antibody sequences when queried through
BLAST [4] and aligned with the conditioning tags that were supplied during generation (Ap-
pendix A.5). Using higher temperatures during sampling increases diversity of sequences generated
while decreasing the average sequence identity of the top BLAST hit (Fig. 2). To generate full
antibodies at a given sampling temperature, we randomly paired an IgLM-generated human heavy
chain and human light chain and generated structural predictions using ColabFold, demonstrating that
the novel antibodies preserve conserved residues and are predicted to fold properly (Fig. 2) [17, 23].

We also generated nanobody sequences with IgLM by conditioning to generate camel heavy-chain
sequences (Appendix A.5). Fig. 2 displays a nanobody-specific disulfide bridge between the CDR1
and CDR3 in a generated antibody, demonstrating that IgLM can model long-range sequential and
structural dependencies.
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Figure 3: (Left) Pipeline for diversifying the CDR H3 loop of 1JPT and generating structural pre-
dictions to measure library properties. (Top right) Hydrophobicity and loop length of the CDR
H3 loops for the IgLM-designed, CDR grafting, and random mutation libraries. (Bottom right)
Developability properties of the libraries as measured by SAP scores, CamSol Intrinsic, and OA-
Sis percentile, representing measurements of aggregation propensity, solubility, and humanness,
respectively (Appendix A.8). Red arrows indicate directions for improved developability.

3.3 Synthetic library design

We sampled from IgLM to diversify the CDR H3 loop of the anti-tissue factor antibody (1JPT),
generating a synthetic library of 1,000 sequences. As baselines, we compared against a random
mutation library with matched loop lengths and a library formed by grafting random CDR H3 loops
from natural human repertoires into the 1JPT framework (Appendix A.6). In Fig. 3, we show that
estimated biophysical properties of the IgLM-designed CDR H3 loops are consistent with those of the
natural CDR H3 loops. We also measured developability metrics of the libraries, including aggregation
propensity, solubility, humanness, and immunogenicity using Spatial Aggregation Propensity (SAP)
scores, CamSol Intrinsic, OASis, and NetMHCIIpan, respectively (Appendix A.6) [5, 36, 26, 30].
Based on these metrics, the IgLM-designed library overall exhibits lower aggregation propensity,
higher solubility, and significantly more humanness than the random mutation baseline.

4 Conclusion

We present IgLM, a language model for generating synthetic antibody libraries by diversifying
portions of an existing antibody sequence. Evidence suggests that IgLM-designed libraries have more
favorable developability compared to a naive baseline generated by random mutation.
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A Appendix

A.1 Model architecture

For IgLM, we used a Transformer decoder architecture based on the GPT-2 model [27] as implemented
in the HuggingFace Transformers library [40]. We set the dimensions of the embeddings and hidden
states to 512, the dimension of the inner feed-forward layers to 2048, and the number of layers to 4
with 8 attention headers per layer, resulting in a final model with 12,888,576 trainable parameters.

A.2 Dataset

809M antibody Fv heavy- and light- chain sequences were collected from the Observed Antibody
Space (OAS) database and clustered using LinClust at a 95% sequence identity threshold to obtain a
set of 588M sequences [18, 37]. 5% of this dataset was held out as a test set. From the remaining
95% of the data, 1,000,000 sequences were held out and used as a validation set for selecting model
hyperparameters, and the rest was used for training, resulting in a training dataset with 558M
sequences.

A.3 Training details

During training, for each sequence A = (a1, ..., an) we chose a mask length m uniformly at random
from [10, 20] and a starting position j uniformly at random from [1, n � m + 1]. We prepended
two conditioning tags cc and cs denoting the chain type and species-of-origin of each sequence
as annotated in the OAS database. Models were trained with a batch size of 512 and 2 gradient
accumulation steps using DeepSpeed [28, 29]. Training took approximately 3 days when distributed
across 4 NVIDIA A100 GPUs.

A.4 Model infilling perplexity evaluation

Infilling perplexity is evaluated by exponentiating the cross-entropy loss computed across all tokens
after the [SEP] token for each sequence in the dataset. IgLM infilling perplexity based on loop,
species-of-origin, and chain type are displayed in Table 1. Infilling perplexity tends to be higher
for loops that are known to have more variability (e.g. CDR3 loop) and for species that are under-
represented in the training dataset (e.g. camel).

To investigate the effect of model size on performance, we trained a smaller model, IgLM-S, with
1,439,232 parameters (using an embedding and hidden dimension size of 192, inner feed-forward
layer dimension of 768, and 3 layers with 6 attention heads each). As displayed in Table 2, infilling
perplexities for IgLM-S are higher across the board, suggesting that increasing model capacity for
IgLM would further improve performance for the infilling task.

Test dataset Random CDR1 CDR2 CDR3

All sequences 1.530 1.535 1.614 4.653
[HUMAN] 1.588 1.631 1.724 4.876
[MOUSE] 1.264 1.101 1.144 3.553
[RAT] 1.492 1.544 2.032 3.757
[RABBIT] 1.501 1.877 2.428 3.097
[RHESUS] 1.629 2.128 3.220 3.436
[CAMEL] 2.682 5.599 5.666 11.673
[HEAVY] 1.542 1.478 1.556 4.994
[LIGHT] 1.450 2.025 2.752 2.324

Table 1: Per-token infilling perplexities computed across the test dataset. Rows denote subsets of the
test dataset with the given conditioning tag. Columns denote the mode of masking, where "Random"
masks spans as described in Appendix A.3 and "CDR1", "CDR2", "CDR3" mask the respective loops
based on Chothia definitions [6]

.
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Test dataset Random CDR1 CDR2 CDR3

All sequences 1.631 1.717 2.052 5.526
[HUMAN] 1.696 1.830 2.221 5.788
[MOUSE] 1.326 1.190 1.344 4.146
[RAT] 1.691 1.983 2.999 6.481
[RABBIT] 1.709 2.714 3.868 4.308
[RHESUS] 1.905 3.351 8.343 5.001
[CAMEL] 3.077 7.567 7.684 13.195
[HEAVY] 1.642 1.612 1.839 5.934
[LIGHT] 1.556 2.713 10.400 2.746

Table 2: Per-token infilling perplexities across the test dataset for IgLM-S.

A.5 Full sequence generation

IgLM can generate full antibody sequences by sequentially sampling from p(Xi|X<i). Because IgLM
was trained under the ILM framework, the [MASK], [SEP], and [ANS] tokens will be generated
during decoding. To generate full antibody sequences, we replaced [MASK] with the residues
generated between [SEP] and [ANS]. Any sequences without [MASK], [SEP], and [ANS] in the
correct order were discarded.

Using this process, we generated antibody sequences by conditioning on a starting sequence C.
For generating human heavy chains, C = ([HEAVY], [HUMAN],E,V,Q), for human light chains
C = ([LIGHT], [HUMAN],D, I,Q), and for nanobodies C = ([HEAVY], [CAMEL],Q,V,Q).

We generated 50 human heavy chains and 50 human light chain antibody sequences using temperature
sampling for each temperature T in [0.7, 0.75, . . . , 1.65, 1.7]. When these sequences were submitted
to BLAST, the top hits aligned with the provided conditioning tags. Table 3 shows the top hits for the
generated human heavy chains, human light chains, and nanobody sequence from Fig. 2.

T Starting tokens Hit description % ID Accession

0.8 [HEAVY][HUMAN]EVQ Ig heavy chain - human [Homo sapiens] 89.92% S31107
0.8 [LIGHT][HUMAN]DIQ IGL c3047_light_IGKV1-39_IGKJ3, partial [Homo sapiens] 99.01% QEP13108.1
1.0 [HEAVY][HUMAN]EVQ immunoglobulin G heavy chain variable region, partial [Homo sapiens] 80.77% AEX29287.1
1.0 [LIGHT][HUMAN]DIQ IGL c2965_light_IGKV1-5_IGKJ1, partial [Homo sapiens] 94.39% QEP13026.1
1.2 [HEAVY][HUMAN]EVQ IGH c3658_heavy_IGHV3-48_IGHD3-9_IGHJ3, partial [Homo sapiens] 75.00% QEP17933.1
1.2 [LIGHT][HUMAN]DIQ immunoglobulin kappa light chain variable region, partial [Homo sapiens] 85.85% QSI99180.1
1.4 [HEAVY][HUMAN]EVQ immunoglobulin heavy chain variable region, partial [Homo sapiens] 86.78% ACS96198.1
1.4 [LIGHT][HUMAN]DIQ anti-rabies virus immunoglobulin light chain variable region, partial [Homo sapiens] 79.44% AAY33370.1
1.6 [HEAVY][HUMAN]EVQ immunoglobulin heavy chain variable region, partial [Homo sapiens] 69.72% CAC88735.1
1.6 [LIGHT][HUMAN]DIQ IG c1102_light_IGKV1-9_IGKJ3, partial [Homo sapiens] 44.95% QEP23714.1
1.0 [HEAVY][CAMEL]QVQ immunoglobulin heavy chain variable region [Camelus bactrianus] 78.86% AGV76535.1

Table 3: Top BLAST hits for the sequences whose structural predictions were displayed in Fig. 2.
BLAST hit descriptions match the provided conditioning tokens, with percent identity of the hits
tending to decrease with increasing temperature.

A.6 1JPT synthetic antibody library design

To re-design a span of length m starting at position j within an antibody sequence A = (a1, . . . an),
we conditioned on C = (cc, cs, a1, ..., aj�1, [MASK], aj+m, ..., an, [SEP]). To generate a span S,
we sequentially sampled p(Si|C, S<i) until the [ANS] token was sampled. To form our designed
sequences, we replaced [MASK] in C with S.

To generate an IgLM-designed synthetic antibody library for the anti-tissue factor antibody (1JPT),
we applied the above procedure using top-p sampling with p = 0.5 to generate a library of 1,000
sequences diversifying the CDR H3 loop of 1JPT [15, 11].

To create the random mutation baseline library, we generated sequences by mutating 5 random
residues within the CDR H3 loop. We then matched to the loop length distribution of the IgLM-
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designed library by choosing random positions for deletions or insertions for each sequence. Amino
acids for the random mutation library were chosen uniformly at random, excluding cysteine.

To create the CDR grafting library, we randomly selected 1,000 human heavy-chain sequences from
the test set and grafted the CDR H3 loop of each sequence into the 1JPT framework.

Figure 4: Structural predictions for ten designed 1JPT CDR H3 loops compared against the wild-type
CDR H3 loop (orange).

To generate structural predictions for both synthetic libraries, we used ABlooper, a fast equivariant
neural network for predicting CDR loop structures [1]. To prepare the designed heavy-chain sequences
to be used by ABlooper, the sequences were renumbered to the IMGT numbering scheme using
ANARCI, then paired with the wild-type 1JPT light chain [19, 9]. ABlooper predicts a backbone
structure for each CDR loop. Side-chains were introduced using Rosetta minimization with the
Rosetta full-atom energy function (ref2015) [2]. Fig. 4 depicts examples of structural predictions for
the designed 1JPT CDR H3 loops. Using both the designed sequences and their structural predictions,
we measured various biophysical and developability properties of the designed library as shown in
Figures 3 and 5.

Figure 5: (Top) Isoelectric point, edit distance, and pairwise edit distance computed between the
CDR H3 loops within each library. (Bottom) Average NetMHCIIpan percentage rank, with higher
ranks denoting lower predicted immunogenicity.
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A.7 4NZU synthetic antibody library design

To explore properties of IgLM-designed libraries for different antibodies, with the approach described
in Appendix A.6, we generated a library of 1,000 sequences by diversifying the CDR H3 loop of
the 4NZU antibody. 4NZU is an antibody isolated from the plasma of a multiple myeloma patient
which binds a protein from Mycoplasma genitalium known as Protein M [14]. We chose 4NZU
because of its longer CDR H3 loop length at 16 residues relative to 1JPT’s loop length at 8 residues
to understand the effects of the wild-type loop length on designed sequence properties. To generate a
random mutation baseline library that approximately matches the edit distances from 4NZU observed
in the IgLM-designed library, we generated sequences by mutating 14 randomly chosen residues
within the CDR H3 loop. We also induced random insertions or deletions within the CDR H3
sequences to match the loop length distribution of the IgLM-designed library. We measured various
properties of the libraries for 4NZU, depicted in Fig.6. Although the immunogenicity and humanness
of the IgLM-designed library tended to be better than the random mutation library, we observed little
difference between the IgLM-designed and random mutation libraries for aggregation propensity
or solubility. More experiments will therefore be necessary to determine how IgLM behaves when
designing loops on various antibodies.

Figure 6: (Top) Biophysical properties, edit distance, and pairwise edit distance computed between
the CDR H3 loops within each library. (Bottom) Developability properties of the synthetic 4NZU
libraries measuring aggregation propensity, solubility, humanness, immunogenicity.

A.8 Measuring properties of designed libraries

To compute the hydrophobicity of the CDR H3 loops, we averaged across residues within the CDR
H3 loop using the hydrophobicity scale proposed by Moon and Fleming [24]. The isoelectric point
for the CDR H3 sequences was computed using Biopython [7]. To compare these properties of the
synthetic libraries against those of natural human repertoires, we sampled 1,000 human heavy-chain
sequences from the test set.
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We measured the developability of our synthetic libraries based on aggregation propensity, solubility,
and immunogenicity. As a proxy for aggregation propensity, using the structural prediction of
each sequence in our libraries, we computed the SAP score, which measures exposed patches of
hydrophobic residues that are hot-spots for aggregation [39, 5]. To measure the solubility of a
sequence, we used the CamSol intrinsic profile, which provides an overall solubility score from
sequence alone [36, 35]. For each sequence in the synthetic libraries, we computed the CamSol
intrinsic profile at pH 7.0. To measure humanness, we used OASis with a "relaxed" prevalence
threshold (� 10% subjects) to compute OASis percentile scores, which compare the humanness of
an antibody to 544 therapeutic mAbs from IMGT mAb DB [25]. To measure immunogenicity, we
used the NetMHCIIpan tool [30] to scan a reference set of 26 HLA alleles estimated to cover 98%
of the population [12], as done by Mason et al. [21]. The percentage rank refers to the rank of the
predicted affinity of a peptide to an allele, relative to a background set of affinities of natural random
peptides to the allele. A higher percentage rank generally denotes a lower likelihood of binding to
the scanned MHC class II molecules, resulting in a lower predicted immunogenicity. For predicting
immunogenicity of the synthetic libraries, the CDR-H3 sequences were padded on each side with 10
residues, and all possible 15-mers in these padded sequences were scanned against the set of 26 HLA
alleles. The average percentage rank and minimum percentage rank were computed as the average
rank and minimum rank respectively across all possible 15-mers scanned against the 26 HLA alleles.
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