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Abstract

During lead optimization, lead molecules are refined for potency via slight modifi-
cations of their chemical structure. Relative binding free energy (RBFE) methods
allow comparisons of molecular potency during this optimization. We utilize a
Siamese Convolutional Neural Network (CNN) to directly estimate the RBFE with
higher throughput than simulation based methods. Our models show improved
performance over a previously published Siamese RBFE predictor. We observe
decreased performance on out-of-domain RBFE predictions.

1 Introduction

Lead optimization is a phase of the drug discovery process that simultaneously optimizes a lead
molecule for potency, solubility, and other pharmaceutical properties. Small modifications are made
to the chemical scaffold of the lead molecule and tested for their affect on the properties of interest.
Collections of molecules produced by this process are termed congeneric series. The synthesis
and testing of each chemical modification takes considerable amounts of time and money. Relative
binding free energy (RBFE) methods provide an in silico alternative to labor-intensive synthesis and
testing by predicting the change in binding free energy, ∆∆G, between congeneric series members.
Typical methods for RBFE use molecular dynamics with alchemical perturbations or a thorough
sampling of the endpoints of the transformation1,2. However, these methods suffer from both a lack
of applicability to large changes between ligands and a low throughput of RBFE predictions3,4.

As a faster alternative to simulation methods, ML-based scoring functions provide low error and high
throughput for absolute binding affinity predictions5–10. Using absolute binding affinity methods
as inspiration, Jiménez-Luna et al. 11 utilize a Siamese Convolutional Neural Network (CNN)12,13

architecture to predict the RBFE between two bound protein-ligand complexes, removing the com-
pounding error from subtracting predicted absolute binding free energies. Here we expand their work
on Siamese Network RBFE predictors by introducing novel loss components and examining the
impact of model architecture. Generalizability of the trained Siamese Network is evaluated.

2 Methods

2.1 Data

We use the BindingDB 3D Structure Series dataset14 as it provides congeneric series with experi-
mentally determined binding affinities for structurally enabled targets. The full dataset encompasses
1038 congeneric series with an average of 9.61 ligands per congeneric series. We filter the dataset
as described in the appendix (A.2) to ensure the binding affinity measurements are high quality and
that we only compare ligands with identical measures of potency: IC50, Kd, or Ki. Our final filtered
BindingDB dataset has 943 unique receptor structures, encompassing 1082 congeneric series with
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Figure 1: Siamese Network simultaneously predicts both ∆∆G and ∆G using the latent vectors of
each protein-ligand complex as determined by the shared convolutional architecture.

an average of 7.995 ligands per congeneric series (Figure A2). The average affinity range of each
congeneric series is 2.023 pK (Figure A3).

2.2 Model Architecture

Similar to Jiménez-Luna et al. 11 we use a Siamese Network12. Siamese Networks use two arms with
shared weights to determine the distance between a pair of inputs, and are used in object matching
and object tracking15–17. We use 3D CNNs as the arms of our Siamese Network to learn directly from
the 3D structure of protein-ligand complexes (Figure 1). We utilize the libmolgrid python library18

with default settings to voxelize the complexes (further defined in A.1). The inputs are then passed
through one of the main convolutional architectures employed by GNINA,19 Default2018 or Dense,
as defined in Francoeur et al. 6 (Figure A1). These convolutional architectures can predict absolute
binding affinity directly from the 3D bound structure of a protein-ligand complex. We implement the
Siamese Network by training a linear layer on the difference between the final latent vectors (27,648
and 224 for Default2018 and Dense, respectively) of the convolutional architectures of the two input
complexes to predict the ∆∆G. The latent vector of each complex is also linearly mapped to its
absolute binding affinity (Figure 1).

We train our model using a linear combination of losses:

LTotal = αL∆∆G + βL∆G + γLrotation + δLconsistency (1)

where α, β, γ, δ∈R+. L∆∆G and L∆G are the mean square error (MSE) of the RBFE and absolute
binding affinity predictions, respectively. Lrotation is the MSE of the latent vectors of two randomly
rotated versions of each protein-ligand pair (Figure 1). This component encourages the latent vectors
to be rotationally invariant. Lconsistency is the MSE of the difference between the predicted absolute
binding affinities and the predicted RBFE, to ensure that the model is providing consistent predictions.
Hyperparameters and other training information are provided in the appendix (A.3).

2.3 Additional Ligands Comparison

In order to directly compare our trained model to Jiménez-Luna et al. 11 , we utilize the additional
ligands training set as described in their manuscript. We train our models on a reference ligand,
as described in A.2, and a given number of additional ligands for each congeneric series. In the
one additional ligand training set, we train on the two ordered pairs of the reference ligand and one
additional ligand. Then testing is carried out on the two-permutations between the ligands in the
training set and ligands that the model has not seen. We construct 25 versions of the training and
testing datasets for each number of additional ligands. Each version of the additional ligand set uses
the same reference ligands and randomly chooses additional ligands to add to the training set for each
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Figure 2: Comparison of our models to Jiménez-Luna et al. 11 on the additional ligands dataset. Error
bars indicate ±1 standard deviation of 25 individual models (only 5 for Dense).

congeneric series. In the case of the Dense convolutional architecture, we only use 5 versions of the
training and testing datasets due to the architecture’s high computational cost.

2.4 Ablation Study

Using the one additional ligand training and testing sets, we investigate the average performance
of 25 models as we disable aspects of the model. We remove components of the loss function to
determine their impact on performance. The contributions of the architectural components to the
performance of the model is also explored. We evaluate the utility of the latent space subtraction
by concatenating rather than subtracting the latent spaces of the convolutional arms of the network,
requiring the RBFE prediction layer to double in input size. The importance of the Siamese network
is evaluated by training a CNN that takes in one protein-ligand pair and predicts the absolute binding
free energy. RBFE is the difference of the predicted absolute binding free energies of two ligands.
When utilizing this architecture, we can no longer enforce Lconsistency.

2.5 Generalization to new Protein Families

RBFE predictions are most useful if they perform well on novel proteins and ligands outside of
the training domain. We evaluate the worst case scenario for generalization via a leave-one-out
protein family cross-validation. Using the protein family database20 we annotate the proteins in the
BindingDB dataset with all of its associated families, finding 73 protein families. We then construct a
leave-one-out cross-validation set for each protein family, where the training set is composed of the
whole BindingDB dataset without any congeneric series in a given protein family and the testing set
is composed of only the congeneric series from the left-out protein family.

3 Results

3.1 Additional Ligands Comparison

Both of our model’s predictions show higher correlation with the experimental RBFE (∆∆G) and
lower root mean square error (RMSE) on the RBFE predictions in comparison to the model developed
by Jiménez-Luna et al. 11 (Figure 2). The mean absolute error (MAE) of our models predictions show
the same trend as the RMSE (Figure A4). Additionally, our models demonstrate a decreased variance
across the 25 versions of the training and test splits. The models demonstrate a continual increase in
performance as they are given more training information about the congeneric series. We find that
the high parameter Dense model does better with lower amounts of congeneric series comparisons
than the lower parameter, Default2018, model. The difference between the performance of the two
CNN architectures decreases as more information is added to the training set of the models.
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Table 1: Ablating different components of the network on the 1 Additional Ligands set to determine
their utility in the full network. Parentheses indicate the ±1 standard deviation of the 25 train/test
versions. Bold indicates results are not significantly different from Standard (p > 0.05).

Ablation Pearson’s R RMSE (pK) MAE (pK)

Standard 0.553(±0.0233) 1.11(±0.0309) 0.82(±0.0187)
No L∆∆G 0.551(±0.0202) 1.12(±0.0248) 0.829(±0.0179)
No L∆G 0.459(±0.0238) 1.27(±0.0289) 0.945(±0.0182)
No Lrotation 0.556(±0.0188) 1.11(±0.0233) 0.819(±0.0162)
No Lconsistency 0.536(±0.021) 1.14(±0.0356) 0.842(±0.0186)
No L∆∆G, Lconsistency −0.0576(±0.136) 1.24(±0.0143) 0.908(±0.0144)
No L∆G, Lconsistency 0.456(±0.0231) 1.28(±0.0319) 0.95(±0.0233)
Concatenation 0.554(±0.0134) 1.11(±0.0223) 0.821(±0.0174)
No Siamese Network 0.5(±0.0347) 1.15(±0.0362) 0.854(±0.021)

3.2 Ablation Study

Removing L∆∆G does not significantly decrease the performance of the RBFE predictions (Table 1),
but increases absolute affinity prediction (Table A3). However, removing L∆G or Lconsistency drops
the performance of the RBFE predictions by a considerable margin. The removal of Lrotation

increases the performance of the Siamese Network, indicating that data augmentation is all that is
required to provide the necessary rotational invariance. When we remove L∆∆G and Lconsistency,
the Siamese Network no longer provides predictions that are correlated with the experimental affinity
values, however, the errors of the predictions are only slightly increased from the baseline.

Altering the Siamese Network architecture does not affect performance as much as removing compo-
nents of the loss function. If we exchange the latent space subtraction of the Siamese Network for a
concatenation, we do not see any change in performance of the model. If we train a convolutional
architecture to predict the absolute affinity values using the same training set, we see the correlation
to the experimental RBFE drops slightly and the error of predictions increases slightly as well.

3.3 Generalization to new Protein Families

When the Default2018 Siamese Network is trained on all of the BindingDB dataset and evaluated on
a left out protein family, we find that the RBFE prediction varies widely across the protein families
(Figure A5). The protein families that have high correlations tend to have low error (Figure A6 and
A7). The average Pearson’s R correlation coefficient across every protein family is 0.24; lower than
the correlation on the additional ligands dataset with the least information for each congeneric series.

4 Discussion and Conclusion

Our models show higher correlation with experimental RBFE and lower errors of prediction than the
model developed by Jiménez-Luna et al. 11 . We see an increase in model performance as the amount
of information about each congeneric series is increased. Our highest parameter CNN architecture,
Dense, was able to outperform the lower parameter Default2018 architecture on the smallest training
set. However, the Dense model is initialized with weights from a absolute binding affinity prediction
task (A.3) which provides the model with much greater initial knowledge of the problem than a
randomly initialized network. When using the Dense architecture with random initialization, the
model had lower RBFE prediction performance than the randomly intitialized Default2018 model
(results not shown).

Only some components of the loss function are contributing to the models RBFE prediction perfor-
mance. The removal of L∆∆G does not have a large impact on model performance indicating L∆G

and Lconsistency contribute significantly to the RBFE prediction performance. The removal of the
Lrotation component increased the performance of the model, which may indicate some isotropic
properties of the network architecture. The latent space structure imposed by the subtraction opera-
tion did not result in improved performance when using 2-permutations for training. The Siamese
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architecture enables understanding of ordering within congeneric series, which is ignored when only
training for absolute affinity prediction.

Despite good intra-congeneric series performance, our Siamese Network does not generalize well
to new protein families suggesting the approach is best used later in the lead optimization process.
Work still needs to be done on both absolute and relative binding affinity predictors to ensure that
they are learning robust models of the intermolecular interactions.
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A Appendix

A.1 Model Architecture

We use the default values of the libmolgrid python library to voxelize our receptor and ligand data.
This creates 14 channels for both the receptor and ligand with the layout of the channels provided in
Tables A1 and A2. A 23.5 Å cubic grid is constructed around the center of the ligand with a grid
resolution of 0.5 Å.

The Default2018 and Dense architecture are shown in Figure A1.

A.2 Data Filtering

First the dataset is split into three different groups, one for each of the measures of potency (IC50,
Kd,Ki). A ligand can be in multiple groups if it has binding affinity measurements for multiple
measures of potency. For each split, we strip any greater than (>) or less than(<) symbols from
the binding affinity measurements of every ligand and use the remaining string as the exact binding
affinity value. If a ligand has multiple measurements for a given measure of potency, we delete the
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Channel Number Type

0 Aliphatic CarbonXS Hydrophobe
1 Aliphatic CarbonXS Non-Hydrophobe
2 Aromatic CarbonXS Hydrophobe
3 Aromatic Carbon Non-Hydrophobe
4 Bromine, Iodine, Chlorine, Fluorine
5 Nitrogen, Nitrogen XS Acceptor
6 Nitrogen XS Donor, Nitrogen XS Donor/Acceptor
7 Oxygen, Oxygen XS Acceptor
8 Oxygen XS Donor/Acceptor, Oxygen XS Donor
9 Sulfur, Sulfur Acceptor
10 Phosphorus
11 Calcium
12 Zinc
13 GenericMetal, Boron, Manganese, Magnesium, Iron

Table A1: Receptor channel atom types

Channel Number Type

0 Aliphatic Carbon XS Hydrophobe
1 Aliphatic Carbon XS Non-Hydrophobe
2 Aromatic Carbon XS Hydrophobe
3 Aromatic Carbon XS Non-Hydrophobe
4 Bromine, Iodine
5 Chlorine
6 Fluorine
7 Nitrogen, Nitrogen XS Acceptor
8 Nitrogen XS Donor, Nitrogen XS Donor/Acceptor
9 Oxygen, Oxygen XS Acceptor
10 Oxygen XS Donor/Acceptor, Oxygen XS Donor
11 Sulfur, Sulfur Acceptor
12 Phosphorus
13 GenericMetal, Boron, Manganese,Magnesium, Zinc, Calcium, Iron

Table A2: Ligand channel atom types

ligand from that measure of potency split if the range of the measurements is greater than one log
unit. Otherwise, we take the median of the multiple measurements. After this filtering, we remove
any ligands that have binding affinity information for a PDB ID that has no other ligands with binding
affinity measurements. We then construct congeneric series by creating ordered pairs of ligands that
have the same receptor and the same measure of potency (IC50, Kd,Ki), we utilize the log-converted
measurements (− log10(value)), referred to as “pK", for each measure of potency. We next define
a reference ligand. Each ligand in has a bound structure that is either the crystal pose or a pose
determined via computational template docking to the protein using the Suflex docking software
and the crystal ligand.21 The reference ligand is assigned as the ligand with the highest Tanimoto
similarity to the ligand used for the template docking, usually the ligand in the crystal that was used
for template docking.

A.3 Hyperparameters and Training Information

During the training of our model we set α = 10 and β, γ, δ = 1. The Default2018 architecture’s
weights are initialized with the Xavier uniform method22 and the biases are initialized to 0. The
Dense model is initialized with weights and biases learned by training for ∆G prediction and pose
selection.6 We found that randomly initialized Dense models performed worse than Default2018
models and pretrained Default2018 models performed worse than randomly initialized Default2018
models (results not shown). All models are trained using the Adam stochastic gradient descent
optimizer23 with the default parameters (β1 = 0.9,β2 = 0.999,ε = 1× 10−8). Models are trained
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(a) Default2018

(b) Dense

Figure A1: Architectures of the Default2018 and Dense models. The numbers in parenthesis indicate
the output number of features from the convolutions.

Table A3: Ablation study of the Siamese Network with respect to absolute affinity prediction.
Parentheses indicate the ±1 standard deviation of the 25 train/test versions. Bold indicates results are
not significantly different from Standard (p > 0.05).

Ablation Pearson’s R RMSE (pK) MAE (pK)

Standard 0.864(±0.0124) 0.841(±0.0377) 0.556(±0.0303)
No L∆∆G 0.873(±0.0057) 0.814(±0.018) 0.517(±0.0136)
No L∆G 0.0278(±0.107) 101(±34.4) 101(±34.5)
No Lrotation 0.866(±0.0059) 0.833(±0.0169) 0.553(±0.0141)
No Lconsistency 0.866(±0.00559) 0.833(±0.0171) 0.559(±0.0158)
No L∆∆G, Lconsistency 0.873(±0.00425) 0.814(±0.0132) 0.514(±0.0121)
No L∆G, Lconsistency −0.0118(±0.0494) 6.65(±0.465) 6.44(±0.48)
Concatenation 0.87(±0.00477) 0.824(±0.0155) 0.531(±0.0158)
No Siamese Network 0.846(±0.0175) 0.883(±0.0479) 0.616(±0.0442)

for 1000 epochs with a learning rate of 0.000367 and a scheduler that reduces the learning rate by a
factor of 0.7 whenever the loss plateaus for more than 20 epochs. Data augmentation is achieved by
randomly rotating and translating the inputs with a maximum translation of 2 Å from the center of
mass of the ligand.

A.4 Additional Results
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Figure A2: Number of ligands per congeneric series

Figure A3: Range of absolute binding affinity per congeneric series in pIC50
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