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Abstract

Multiple Sequence Alignments (MSAs) of homologous sequences contain infor-
mation on structural and functional constraints and their evolutionary histories.
Despite their importance for many downstream tasks, such as structure prediction,
MSA generation is often treated as a separate pre-processing step, without any
guidance from the application it will be used for. Here, we implement a smooth
and differentiable version of the Smith-Waterman pairwise alignment algorithm
that enables jointly learning an MSA and a downstream machine learning system
in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth
Markov Unaligned Random Field), a new method that jointly learns an alignment
and the parameters of a Markov Random Field for unsupervised contact prediction.
We find that SMURF mildly improves contact prediction on a diverse set of protein
and RNA families. As a proof of concept, we demonstrate that by connecting

Machine Learning for Structural Biology Workshop, NeurIPS 2021.



our differentiable alignment module to AlphaFold2 and maximizing the predicted
confidence metric, we can learn MSAs that improve structure predictions over
the initial MSAs. This work highlights the potential of differentiable dynamic
programming to improve neural network pipelines that rely on an alignment.

1 Introduction

Multiple Sequence Alignments (MSAs) are commonly used in biology to model evolutionary rela-
tionships and the structural/functional constraints within families of proteins and RNA. Alignments
are a critical component of the protein structure prediction pipeline [4, 21], help predict the functional
effects of mutations [14, 19, 39], and can be used for rational protein design [15]. Creating alignments,
however, is a challenging problem [37, 35] and each method has a number of hyperparameters which
are often chosen on an application-specific basis. This suggests that computational methods that rely
on an input MSA could be improved by jointly learning the MSA and training the method.

Our goal is to understand whether MSA generation can be directly incorporated into learning, rather
than treated as a separate preprocessing step. We used the differentiable dynamic programming
framework developed in [25] to implement a smooth and differentiable version of the Smith-Waterman
pairwise alignment algorithm [36] that can be applied to learn alignments in end-to-end neural network
pipelines. We apply our smooth Smith-Waterman implementation in two neural network pipelines.
First, we design an unsupervised contact prediction method that jointly learns an alignment and
the parameters of a Markov Random Field (MRF) for RNA and protein. Next we connect our
differentiable alignment method to AlphaFold2 to jointly infer an alignment and protein structure
[21]. Our main contributions are as follows:

1. We implemented a smooth and differentiable version of Smith-Waterman for local pairwise
alignment in JAX [7]. Our code is freely available and can be applied in any end-to-end
neural network pipeline written in JAX or tensorflow. Moreover, we give a self-contained
description of our implementation and its mathematical underpinnings, providing a template
for future implementations in other languages.

2. We designed a contact prediction method called Smooth Markov Unaligned Random Field
(SMURF) that inputs unaligned sequences and jointly learns an alignment and MRF param-
eters. We show that SMURF outperforms a neural version of GREMLIN for protein and
RNA contact prediction on a diverse set of families.

3. To demonstrate the utility of a differentiable alignment layer, we modify the AlphaFold2
model, replacing the MSA with a learned alignment module (LAM). For a given set of
unaligned related sequences, we backprop through AlphaFold to update the parameters of
LAM, by maximizing the predicted LDDT and minimizing the predicted alignment error.

2 Smooth Smith-Waterman

Our vectorized implementation of the Smooth Smith-Waterman algorithm takes as input a gap penalty
g and a matrix of alignment scores. We use JAX due to its JIT (‘just in time’) compilation and
automatic differentiation features [7]. Since our implementation is fully differentiable, it can be
composed with JAX implementations of neural networks in end-to-end pipelines. We introduce four
other features, detailed in Appendix C.5: temperature, affine gap, restrict turns, and global alignment.
In Appendix C.2, we demonstrate that our implementation is faster than the implementation of [27].

3 Learned alignment module

The key to improving a Smith-Waterman alignment is finding the right input matrix of alignment
scores a = (aij)i≤`x,j≤`y . Typically, when Smith-Waterman is used for pairwise alignment the
alignment score between positions i and j, aij , is given by a BLOSUM or PAM score for the pair of
residues Xi and Yj [2, 9, 17]. This score reflects how likely it is for one amino acid to be substituted
for another. Such a scoring scheme does not acknowledge the context of each residue in the sequence.

We introduce the learned alignment module (LAM) that adaptively learns a context-dependent
alignment score matrix aij . The value aij expresses the similarity between Xi in the context of
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Xi−w, . . . Xi, . . . Xi+1 and Yj in the context of Yj−w, . . . Yj , . . . Yj+w. We represent position i
in sequence X as a vector vXi obtained by applying a convolutional layer of window size w to a
one-hot encoding of Xi and its neighbors. The value aij in our input matrix is the dot product of
the corresponding vectors, aij = vXi · vYj . Figure 1 illustrates a batched version of LAM. Our use of
smooth Smith-Waterman makes this process entirely differentiable, enabling us to plug our alignment
into a downstream module, compute a loss function, and train the pipeline end-to-end.
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Figure 1: Learned alignment module (LAM). Residues are encoded as vectors through a convolution
of the one-hot representations of the sequences. A similarity tensor is constructed by taking the
dot product of the vectors for each sequence with the vectors for the query sequence. Smooth
Smith-Waterman is applied, yielding pairwise alignments between each sequence and the query
sequence.

4 Application to contact prediction

GREMLIN is a probabilistic model of protein variation that uses the MSA of a protein family to
estimate parameters of a Markov Random Field (MRF), see Appendix D.1 and [22, 31]. Since
GREMLIN relies on an input MSA, one would expect that improved alignments would yield better
contact prediction results. To test this idea, we designed a pipeline for training a GREMLIN-like
model that inputs unaligned sequences and jointly learns the MSA and MRF parameters. We call our
method Smooth Markov Unaligned Random Field or SMURF.

SMURF has two phases of training, both of which begin with the LAM. Initial convolutions are
learned in BasicAlign. Then in TrainMRF, a masked language modeling objective is used to
learn MRF parameters and update the convolutions (Figures 9 and 10). We compare SMURF to
GREMLIN trained with masked language modeling (MLM-GREMLIN) [6]. The architecture of
MLM-GREMLIN is the similar to TrainMRF step of SMURF, except that an alignment is part of the
input instead of computed via the LAM.

We trained and evaluated our model on a diverse set of protein families, as described in Appendices B.1
and D.4. To evaluate the accuracy of the methods, we computed the area under the curve (AUC) for a
plot of t versus the fraction of the predicted top t contacts that are correct. Figure 2 illustrates that
SMURF mildly outperforms MLM-GREMLIN on protein and RNA families. For further analysis,
see Appendix D.3.

5 Backprop through AlphaFold2

As a proof of concept, we selected five CASP14 domains where the structure prediction quality from
AlphaFold was especially sensitive to how the MSA was constructed. We reasoned that the quality
was poor due to issues in the MSA and by realigning the sequences using AlphaFold’s confidence
metrics we may be able to improve on the prediction quality.

For each of the five selected CASP targets, separate LAM parameters were fit to maximize the
predicted confidence metric. (See Appendix B.3.) This includes the predicted LDDT (pLDDT) and
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Figure 2: Performance comparison on (a) protein and (b) non-coding RNA. (Top) Scatter plots of the
AUC of the top L predicted contacts for SMURF versus MLM-GREMLIN. (Bottom) Histograms
of the difference in AUC between SMURF and MLM-GREMLIN. (Right) Comparison of contact
predictions and the positive predictive value (PPV) for different numbers of top N predicted contacts,
with N ranging from 0 to 2L, for SMURF (red) and MLM-GREMLIN (blue) for Rfam family
RF00010 (Ribonuclease P.) and RF00167 (Purine riboswitch). Gray dots represent PDB-derived
contacts, circles represent a true positive, and x represents a false positive. For contact predictions for
RFAM00010, The black circles highlight a concentration of false positive predictions.

alignment error as returned by AlphaFold’s “model_3_ptm". For all five targets, we were able to
improve on the pLDDT. However only 4 of the 5 targets showed an improvement in RMSD.

6 Discussion

In this work we explored the composition of multiple sequence alignment with language models
in a pipeline that can be trained end-to-end without usage of any existing alignment software or
ground-truth alignments. Moreover, our smooth Smith-Waterman implementation is designed to be
usable and efficient, and we hope it will enable experimentation with alignment modules in other
applications of machine learning to biological sequences.

There is ample opportunity for future work to compare architectures for the scoring function in smooth
Smith-Waterman. Recurrent networks, attention mechanisms, or hand-crafted architectures could
capture other signal important for alignment scoring. We also hope that this will enable applications
in remote homology search, structure prediction, or studies of protein evolution.

Besides Multiple Sequence Alignments, there are numerous other discrete structures essential to
analysis of biological sequences. These include Probabilistic Context Free Grammars used to model
RNA Secondary Structure [29] and Phylogenetic Trees used to model molecular evolution. Designing
differentiable layers that model meaningful combinatorial latent structure in evolution and biophysics
is an exciting avenue for further work in ML and biology.

Acknowledgements. We thank Sean Eddy for pointing out the need for a restrict turns feature
and Jake VanderPlas for supplying JAX code that efficiently rotates a matrix (as in Figure 7b).
Computational analyses were performed with assistance from the US National Institutes of Health
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search Computing Group at Harvard University. SP was supported by the NSF-Simons Center for
Mathematical and Statistical Analysis of Biology at Harvard (award #1764269). NB was supported
in part by NIH grant R35-GM134922 and by the Exascale Computing Project (17-SC-20-SC), a
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Figure 3: Learnt MSA with higher AlphaFold confidence results in improved structure prediction. The
scatter plot shows the sampled pLDDT and RMSD across all trajectories. For example trajectories
see Figure 15. The dotted lines show the initial pLDDT and RMSD (root-mean-squared-distance
to native structure) using the MSA from MMseqs2. For each CASP14 target, the native structure is
rainbow colored, and the predictions are overlaid and colored white. After maximizing the confidence
metric, the structure with the max pLDDT (circled) is shown in the after column. For target T1043-D1
that failed to improve see Figure 16.
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A Related work

Differentiable Dynamic Programming in NLP. Differentiable dynamic programming algorithms
are needed in order to model combinatorial structures in a way that allows backpropagation of
gradients. Such algorithms have been used in NLP to build neural models for parsing [12], grammar
induction [23], and more. Smooth relaxations of argmax and other non-differentiable functions
can enable differentiation through dynamic programs. Mensch and Blondel leverage semirings to
provide a unified framework for constructing differentiable operators from a general class of dynamic
programming algorithms [25]. This work has been incorporated into the Torch-Struct library [33]
to enable composition of automatic differentiation and neural network primitives, and was also
recently implemented in Julia [38]. We base our smooth Smith-Waterman implementation and its
mathematical interpretation off of this work.

Smooth and differentiable alignment in computational biology Before differentiability was rel-
evant, computational biologists used pair HMMs to express probability distributions over pairwise
alignments [11]. The forward algorithm applied to a pair HMM can be viewed as a smoothed ver-
sion of Smith-Waterman. Later, a differentiable kernel-based method for alignment was introduced
[34]. More recently, Morton et al. implemented a differentiable version of the Needleman-Wunsch
algorithm for global pairwise alignment [30, 27]. Our implementation has several advantages: (i)
vectorization makes our code faster (see Appendices C.2 and C.4)), (ii) we implemented local align-
ment and an affine gap penalty (see Appendix C.5), and (iii) due to the way gaps are parameterized,
the output of [27] can not be interpreted as an expected alignment (see Appendix C.3).
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Language models, MRFs, and alignments. Previous work combining language model losses with
alignment of biological sequences place the alignment layer at the end of the pipeline. Bepler et al.
first pretrain a bidirectional RNN language model, then freeze this model and train a downstream
model using a pseudo-alignment loss [5]. Similarly, Morton et al. use a pretrained language model to
parametrize the the alignment scoring function [27]. Their loss, however, is purely supervised based
on ground-truth structural alignments. For RNA, a transformer embedding has been trained jointly
with a masked language modeling and structural alignment [1]. In contrast to all of these papers, our
alignment layer is in the middle of the pipeline and is trained end-to-end.

Joint modeling of alignments and Potts models has been explored. Kinjo includes insertions and
deletions into a Potts model using techniques from statistical physics [24]. With the goal of designing
generative classifiers for protein homology search, two other works jointly infer HMM and Potts
parameters through importance sampling [40] and message passing [28].

B Data and code availability

Our code and a detailed description of the data we used is available at: https://github.com/
spetti/SMURF.

B.1 Protein analysis

For our analysis on proteins, we used the MSAs and contact maps collected in [3]. For training
and initial tests, we used a reduced redundancy subset of 383 families constructed in [8]. Each
family has least 1K effective sequences, and there is no pair of families with an E-value greater that
1e-10, as computed by an HMM-HMM alignment [18]. A random 190 families were used as the
training set to indentify quality hyperparameters of the model. The remaining 193 families served
as the test set and are represented in Figure 2a, with the exceptions of two outlier families 4X9JA
(SMURF AUC = 0.0748, MLM-GREMLIN AUC = 0.0523) and 2YN5A (SMURF AUC = 0.135,
MLM-GREMLIN AUC = 0.145). Figure 13 includes data from 99 families from [18] that have at
most 128 sequences. A list of the families used in each setting is available in our GitHub repository.

B.2 Non-coding RNA analysis

For each non-coding RNA, we aligned the RNA sequence in the PDB along with the corresponding
Rfam sequences to an appropriate Rfam covariance model using Infernal [29]. We then analyzed
these sequences using the same procedure outlined for proteins. We evaluated the efficacy of the
predicted contact maps using the PDB-derived contact map, where two nucleotides are classified as in
contact if the minimum atomic distance is below 8 angstrom. A list of the families used is available
in our GitHub repository.

B.3 AlphaFold experiment

For our case study, the initial multiple sequence alignments (MSA) were obtained from MMseqs2
webserver as implemented in ColabFold [26]. After trimming the MSAs to their official domain
definition, they were further filtered to reduce redundancy to 90 percent and to remove sequences
that do not cover at least 75 percent of the domain length, using HHfilter [37]. Continuous domains
under 200 in length, with at least 20 sequences, RMSD (root-mean-squared-distance) greater than 5
angstroms and the predicted LDDT (confidence metric) below 75, were selected for the experiment.
We include one discontinuous targets T1064-D1 (SARS-CoV-2 ORF8 accessory protein) with only
16 sequences as an extra case study, as this was a particularly difficult CASP target that required
manual MSA intervention, guided by pLDDT, to predict well [20]. The filtered MSAs were unaligned
(gaps removed, deletions relative to query added back in) and padded to the max length.

When the number of sequences is low, we find the optimization to be especially sensitive to parameter
initialization. To increase robustness, 30 independent optimization trajectories with 100 iterations
each were carried out using ADAM. For each trajectory, a different seed and learning rate were used.
The learning rates include 1E-2, 1E-3 and 1E-4. See Figure 15 and Figure 16 for all the trajectories.
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Figure 4: The alignment graph for sequences X = x1x2x3 and Y = y1y2. Edge labels describe the
corresponding aligned pair, and colors indicate the weights. All red edges start at the source s, and
all orange edges end at the sink t. The bold path corresponds to the alignment of X and Y written on
the right.

C Smooth Smith-Waterman

C.1 Mathematical description of smooth Smith-Waterman

Pairwise sequence alignment can be formulated as the task of finding the highest scoring path through
a directed graph in which edges correspond to an alignment of two particular residues or to a gap.
The edge weights are the scores for aligning the corresponding residues or the gap penalty, and
the score of the path is the sum of the edge weights. The Smith-Waterman algorithm is a dynamic
programming algorithm that returns a path with the maximal score. The Smooth Smith-Waterman
algorithm instead finds a probability distribution over paths in which higher scoring paths are more
likely.

Figure 4 illustrates an alignment graph. The vertex set of the alignment graph for sequences
x1, x2, . . . x`x and y1, y2, . . . , y`y contains grid vertices vij for 0 ≤ i ≤ `x and 0 ≤ j ≤ `y , a source
s, and a sink t. The directed edges are defined so that each path from s to t corresponds to a local
alignment of the sequences. The table below describes the definitions, meanings, and weights of the
edges.

Edge Meaning Weight
vi−1,j−1 → vi,j xi and yj are aligned xi,yj alignment score aij
vi,j−1 → vi,j yj is aligned with the gap character _ gap penalty g
vi−1,j → vi,j xi is aligned with the gap character _ gap penalty g
s→ vi,j xk for k ≤ i and yk for k ≤ j are excluded 0
vi,j → t xk for k > i and yk for k > j are excluded 0

The Smith-Waterman algorithm iteratively computes the highest score of a path ending at each vertex
and returns the highest scoring path ending at t. Let w(u→ v) denote the weight of the edge u→ v,
and let N−(v) = {u |u→ v is an edge} denote the incoming neighbors of v. Let f(v) be the value
of the highest scoring path from s to v. Taking f(s) = 0, we compute

f(v) = max
u∈N−(v)

{f(u) + w(u→ v)}.

For grid vertices this simplifies to

f(vi,j) = max{f(vi−1,j−1) + aij , f(vi,j−1) + g, f(vi−1,j) + g}.
A path with the highest score is computed by starting at the sink t and tracing backward along the
edges that achieve the maxima. (For further explanation see Chapter 2 of [11] or [36]).

Following the general differentiable dynamic programming framework introduced in [25], we imple-
ment a smoothed version of Smith-Waterman. We compute a smoothed version of the function f ,
which we denote fS , by replacing the max with logsumexp. We again take fS(s) = 0, and define

fS(v) = log

 ∑
u∈N−(v)

exp
(
fS(u) + w(u→ v)

) . (1)
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We use these smoothed scores and the edge weights to define a probability distribution over paths in
G, or equivalently local alignments.

Definition 1. Given an alignment graph G = (E, V ), define a random walk starting at vertex t that
traverses edges of G in reverse direction according to transitions probabilities

T (v → u) =
exp

(
fS(u) + w(u→ v)

)∑
u′∈N−(v) exp (fS(u′) + w(u′ → v))

and ends at the absorbing vertex s. Let µG be the probability distribution over local alignments in
which the probability of an alignment A is equal to the probability that the random walk follows the
reverse of the path in G corresponding to A.

Under the distribution µG, the probability that residues xi and yj are aligned can be formulated as a
derivative. Mensch and Blondel established this relationship in generality for differentiable dynamic
programming on directed acyclic graphs [25].

Proposition 1 (Proposition 3 of [25]). Let G be an alignment graph and µG be the corresponding
probability distribution over alignments. Then

PµG
( xi and yj are aligned ) =

∂fS(t)

∂w(vi−1,j−1 → vi,j)
=
∂fS(t)

∂aij
.

For completeness, we now repeat the proof of Proposition 1 given in [25] for the special case of
Smooth Smith-Waterman. We first give a probabilistic interpretation of the gradient fS(t) with
respect to the vertex scores fS(vij).

Proposition 2. Let G be an alignment graph. With respect to the random walk described in Defini-
tion 1,

P( v is visited ) =
∂fS(t)

∂fS(v)
.

Proof. Let N+(v) = {u | v → u is an edge in G} denote the outgoing neighborhood of v. Let
u1, . . . un denote the vertices ofG in a reverse topological order. We prove the statement by induction
with respect to this order. Note u1 = t, and P( t is visited ) = ∂fS(t)

∂fS(t)
= 1. Assume that for all

1 ≤ i ≤ j, P( ui is visited ) = ∂fS(t)
∂fS(ui)

. Observe

∂fS(t)

∂fS(uj+1)
=

∑
u′∈N+(uj+1)

∂fS(t)

∂fS(u′)

∂fS(u′)

∂fS(uj+1)

=
∑

u′∈N+(uj+1)

P( u′ is visited )
∂

∂fS(uj+1)
log

 ∑
u′′∈N−(u′)

exp
(
fS(u′′) + w(u′′ → u′)

)
=

∑
u′∈N+(uj+1)

P( u′ is visited )
exp

(
fS(uj+1) + w(uj+1 → u′)

)∑
u′′∈N−(u′) exp (fS(u′′) + w(u′′ → u′))

=
∑

u′∈N+(uj+1)

P( u′ is visited )T (u′ → uj+1)

= P( uj+1 is visited ),

where in the second equality we apply the inductive hypothesis.

Proof of Proposition 1. It suffices to show that for each directed edge u→ v in G

∂fS(t)

∂w(u→ v)
= P( edge u→ v is traversed )

10



where the traversal occurs from v to u in the random walk. Observe
∂fS(t)

∂w(u→ v)
=
∂fS(t)

∂fS(v)

∂fS(v)

∂w(u→ v)

= P( v is visited )
∂

∂w(u→ v)
log

 ∑
u′∈N−(v)

exp
(
fS(u′) + w(u′ → v)

)
= P( v is visited )

exp
(
fS(u) + w(u→ v)

)∑
u′∈N−(v) exp (fS(u′) + w(u′ → v))

= P( v is visited )T (v → u)

= P( edge u→ v is traversed ).

C.2 Speed test

Our speed benchmark indicates that our implementations are faster than the smooth Needleman-
Wunsch implementation in [27]. Moreover, comparison between a vectorized and naive version of
our code shows that vectorization substantially reduces the runtime. We compare the time for a
forward pass as well as for both the forward and backward passes. The latter is relevant when using
the method in a neural network pipeline requiring backprogation.
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Figure 5: Runtime comparisons between the Needleman-Wunsch implementation in [27] our JAX
implementations of smooth Smith-Waterman (green), smooth Needleman-Wunsch (orange) and a
naive non-vectorized Needleman-Wunsch (blue). Top plots report time for a forward pass, and the
bottom plots report time for a forward and backward pass.

C.3 Difference in Needleman-Wunsch implementation of [27]

The authors of [27] implement a differentiable version of the Needleman-Wunsch global alignment
algorithm [30]. Their implementation differs from ours in how gaps are parameterized. Consequently,
their output indicates where gaps or matches are likely, whereas our output expresses matches in an
expected alignment.
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The authors of [27] define
vi,j = µi,j + max

Ω
(vi−1,j−1, gi,j + vi−1,j , gi,j + vi,j−1) ,

where gi,j is the gap penalty for an insertion or deletion at i or j, µi,j is the alignment score for Xi

and Yj , and maxΩ(x) = log (
∑
i exp (xi)) (see Appendix A of [27]). The values vi,j are analogous

to our definition fS on grid vertices (Equation (1)) with match scores µi,j = ai,j ,

fS(vi,j) = max
Ω

(
fS(vi−1,j−1) + µi,j , f

S(vi,j−1) + g, fS(vi−1,j) + g
)
.

In the alignment graph for their formulation, gap edges have weight µi,j + gi,j . In our alignment
graph, gap edges have weight g; the match score µi,j does not play a role, and our gap penalty is not
position dependent.

Their code outputs the derivatives ∂vN,M

∂µi,j
. The derivative ∂vN,M

∂µi,j
is high whenever the dominant

alignment path uses an edge whose weight includes µi,j ; this includes the edges that corresponds to

gaps. In contrast, in our formulation ai,j = µi,j appears on the match edge only, and so ∂fS(t)
∂ai,j

is
high only when the dominant alignment path uses the edge corresponding to a match. Proposition 1
establishes that ∂f

S(t)
∂ai,j

equal to the probability thatXi and Yj are aligned, so our output is an expected
alignment. Figure 6 establishes that this is not the case for the output of the Needleman-Wunsch
implementation of [27].
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Figure 6: The output of the Needleman-Wunsch implementation of [27] is not an expected alignment.
It is not the case that Y4 = D is aligned with X4 = W with probability 0.33, X5 = Z with
probability 0.67, and X6 = D with probability 1.0 because in any alignment, Y4 can be aligned to at
most one residue of sequence X .

C.4 Vectorization in our SSW implementation

The use of vectorization in our smooth Smith-Waterman implementation speeds up our code sub-
stantially. In order to compute the final score fS(t), we iteratively compute the scores of the grid
vertices fS(vi,j), which take as input the values fS(vi−1,j), f

S(vi,j−1), and fS(vi−1,j−1). In a
simple implementation, a for loop over i and j is used to compute the values fS(vi,j) (Figure 7a).
To leverage vectorization, we instead compute the values fS(vi,j) along each diagonal in tandem, i.e.
all (i, j) such that i+ j = d. To implement this, we rotate the matrix that stores the values fS(vi,j)
by 90 degrees so that each diagonal now corresponds to a row (see Figure 7b). In the rotated matrix,
the values in a row d are a function of the values in rows d− 1 and d− 2, and therefore we can apply
vectorization to quickly fill the matrix.

C.5 SSW options

Our smooth Smith-Waterman implementation has the following three additional options.

Temperature parameter. The temperature parameter T controls the extent to which the probability
distribution over alignments is concentrated on the most likely alignments; higher temperatures yield
less concentrated alignments. We compute the smoothed score for the vertex v as

fS(v) = T · log

 ∑
u∈N−(v)

exp

(
fS(u) + w(u→ v)

T

) ,

which matches Equation (1) at the default T = 1.
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Figure 7: (a) In a simple implementation, the value fS(vi,j) are computed individually in a for
loop over i and j. (b) In a striped implementation, that values along each diagonal in the matrix are
computed in tandem. We implement this with vectorization by rotating the matrix and computing the
values in each row in tandem. The blue denotes meaningless positions in the rotated matrix that we
set to −∞. This figure is inspired by Michael Brudno (University of Toronto).

Affine gap penalty. The “affine gap" scoring scheme introduced to Smith-Waterman by [16] applies
an “open" gap penalty to the first gap in a stretch of consecutive gaps and an “extend" gap penalty to
each subsequent gap. The open gap penalty is usually larger than the extend penalty, thus penalizing
length L gaps less severely than L separate single residue gaps.

To implement an affine gap penalty, we use a modified alignment graph with three sets of grid
vertices that keep track of whether the previous pair in the alignment was a gap or a match. Edges
corresponding to the first gap in a stretch are weighted with the “open" gap penalty1. Figure 8a
illustrates the incoming edges of the three grid vertices for (i, j). Paths corresponding to alignments
with xi and yj matched pass through vDij , paths corresponding to alignments with a gap at xi pass
through vLij , and paths corresponding to alignments with a gap at yj pass through vTij . Storing three
sets of grid vertices requires three times the memory used by the standard version. For this reason we
implemented SMURF with a standard gap penalty.

Restrict turns. Smooth Smith-Waterman is inherently biased towards alignments with an un-
matched stretch of X followed directly by an unmatched stretch of Y over alignments with an equally
long unmatched stretch in one sequence. Consider the example illustrated in Figure 8b where the
highest scoring match states are depicted by bold black, light blue, and dark green lines. Suppose
the match scores of the light blue and the dark green are identical. With a standard Smith-Waterman
scoring scheme (no affine gap), the alignment containing the black and light blue segments has the
same score as each alignment containing the black and dark green segments. However, there are more
alignments that pass through the dark green segment. There are ten ways to align ABC and VW
with no matches (the red, purple, orange, brown, and light green paths illustrate five such ways), but
only one way to align VWXY Z with gaps (navy blue). Smooth Smith-Waterman will assign the
same probability to each of these paths. However, since ten of the eleven paths go through the dark
green segment, the expected alignment output by smooth Smith-Waterman will favor the dark green
segment. This bias becomes more pronounced the longer the segments; there are

(
L
A

)
alignments of a

sequence of length L and a sequence of length L−A with no matches.

To remove this bias, we implemented “restrict turns" option that forbids unmatched stretches in the
X sequence from following an unmatched stretch in the Y sequence. To do so, we again use an
alignment graph with three sets of grid vertices to keep track of the previous pair in the alignment.
Removing the edge with the asterisk in Figure 8a, forbids transitions from an unmatched stretch in
the Y sequence to an unmatched stretch in the X sequence. When implemented with this restrict
turns option, smooth Smith-Waterman will find exactly one path through the dark green and black

1By convention, we charge the open gap penalty when a gap in sequence X is proceeded by a gap in sequence
Y and vice versa.
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Figure 8: (a) The modification of the alignment graph from Figure 4 needed for the affine gap penalty.
Incoming edges of the vertices vLij ,v

D
ij , and vTij are illustrated. The colors of the edges indicate their

weights. The grey labels describe the corresponding aligned pair for each group of edges. The red
edge is incoming from the source vertex s. There is an outgoing edge from vDij to the sink t for all
i, j ≥ 1 (not pictured). The edge marked with an asterisk is removed under the “restrict turns" option.
(b) Without the restrict turns option, there ten paths containing both black segments and dark green
segment. The red, purple, orange, brown, and light green illustrate five of these paths. There is only
one path that contains both black segments and light blue segment, as depicted in navy blue. The
sub-alignments corresponding to the colored segments are written on the right. With the restrict turns
option the purple, orange, brown, and green paths are not valid.

segments in Figure 8: the path highlighted in red. Due to the increased memory requirement of the
restrict turn option, we did not utilize the option in SMURF.

Global Alignment. We also implement the Needleman-Wunsch algorithm, which outputs global
alignments rather than local alignments.

D SMURF

D.1 GREMLIN details

GREMLIN is a probabilistic model of protein variation that uses the MSA of a protein family to
estimate parameters of a Markov Random Field (MRF) of the form

P(X = x) =
1

Z
exp (E (x; v, w)) where E (x; v, w) =

∑̀
i=1

vi(xi) +
∑̀
j=1

wij(xi, xj)

 (2)

where ` is the number of columns in the MSA, vi represents the amino acid propensities for position
i, wij is the pairwise interaction matrix for positions i and j, and Z is the partition function (the
value E( · ; v, w) summed over all sequences x). Typically the model is trained by maximizing the
pseudolikihood of observing all sequences in the alignment [22, 31, 13, 4]. Here we follow the
approach of [6, 32], and use Masked Language Modeling (MLM) to find the parameters w and b. The
pairwise terms wij can be used to predict contacts by reducing each matrix wij into a single value
that indicates the extent to which positions i and j are coupled.

D.2 SMURF details

SMURF has two phases: BasicAlign and TrainMRF. Both begin with the learned alignment module
(Figure 1), but they have different architectures and loss functions afterwards.

BasicAlign. Similarity matrices produced by randomly initialized convolutions will produce chaotic
alignments that are difficult for the downstream MRF to learn from. The purpose of BasicAlign
is to learn initial convolutions whose induced similarity matrices yield alignments with relatively
homogeneous columns (see Figure 9). The input to BasicAlign is a random subset of sequences
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Figure 9: BasicAlign. An alignment is computed with the learned alignment module (Figure 1), and
the corresponding MSA is averaged. Squared loss (Equation (4)) is computed between the averaged
MSA and the one-hot encoding of the aligned input sequences.

S = {S(1), . . . S(B)} in the protein family. A pairwise alignment between each sequence and the
first sequence S(1) is produced via the learned alignment module (as described in Figure 1). This set
of alignments can be viewed as an MSA where each column of the MSA corresponds to a position in
the first sequence. Averaging the MSA yields the distribution of residues in each column. Let Mix be
the fraction of sequences in S with residue x aligned to position i of S(1),

Mix =
1

B

B∑
k=1

`k∑
j=1

pkij1{S
(k)
j = x}, (3)

where `k is the length of S(k) and pkij is the probability that position i of S(1) is aligned to position j
of S(k) under the smooth Smith-Waterman alignment. The BasicAlign loss is computed by taking
the squared difference between each aligned one-hot encoded sequence and the averaged MSA,

L(S,M) =

`1∑
i=1

∑
x

B∑
k=1

`k∑
j=1

(
Mix − pkij1{S

(k)
j = x}

)2

. (4)
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Figure 10: TrainMRF. Random positions in the input sequences are masked, then aligned with the
learned alignment module Figure 1. A prediction for the masked positions is computed from the
MRF parameters according to Equation (5). The network is trained with cross entropy loss given by
Equation (6). The light blue arrows illustrate the update to the query that occurs between iterations of
training; the query is weighted average of the one-hot query sequence and a running average of the
MSAs computed in previous iterations (Equation (7)). The grey arrow depicts the extraction of the
contact map from the MRF matrix w at the end of training (Equation (8)).

TrainMRF. In TrainMRF, masked language modeling is used to learn the MRF parameters and
further adjust the alignment module convolutions (see Figure 10). The input to TrainMRF is a set of
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sequences drawn at random from the MSA, S = {S(1), . . . S(B)}. A random 15% of the residues of
the input sequences are masked, and the masked sequences are aligned to the query via the learned
alignment module (as described in Figure 1). The parameters for the alignment module are initialized
from BasicAlign, and the query is initialized as the one-hot encoded reference sequence for the
family.

The MRF has two sets of parameters: symmetric matrices wij ∈ RA×A for 1 ≤ i, j ≤ `R with
wij = wji that correspond to pairwise interactions of the positions in the reference sequence and
position-specific bias vectors bi ∈ RA for 1 ≤ i ≤ `R. Here `R denotes the length of the reference
sequence, and A is the alphabet size (A = 21 for amino acids and A = 5 for nucleotides since each
includes the gap character).

After the sequences are aligned to the query, the infill distribution for each masked position is
determined by the MRF parameters as follows. For a masked position j in sequence k, we define
Ŝ

(k)
j ∈ RA as the predicted distribution over residues at position j of sequence S(k). Let pkit be

the probability that position t of S(k) is aligned to position i of the query under the smooth Smith-
Waterman alignment, and let mk

t be the indicator that position t in sequence S(k) was masked. To
compute Ŝ(k)

j , we first compute a score for each residue x that is equal to the expected value (under
the smooth alignment) of the terms of the function E( · ; b, w) specific to position j or involving
position j and an unmasked position. Then we compute the infill distribution by taking the softmax.
Formally,

S̄
(k)
jx =

`R∑
i=1

pkij

bix +

`r∑
r=1,r 6=i

`R∑
t=1

mk
t p
k
rtwir

(
x, S

(k)
t

) and Ŝ
(k)
jx =

exp
(
S̄

(k)
jx

)
∑
y exp

(
S̄

(k)
jy

) . (5)

We train the network using a cross entropy loss and L2 regularization on w and b with λ = .01

L(S, p, b, w) = −
B∑
k=1

`R∑
j=1

∑
x

mk
jS

(k)
jx log Ŝ

(k)
jx +

λ(`R − 1)(A− 1)

2

∑
i,j

∑
x,y

wij(x, y)2 +

`r∑
i=1

∑
x

b2ix

 .

(6)

After each iteration, the query is updated to reflect the inferred MSA. Let R be the one-hot encoding
of the reference sequence. We define Ci+1 as a rolling weighted average of the MSAs learned through
iteration i and Qi as the query for iteration i,

C1 = R, Ci+1 = ηCi + (1− η)M i, and Qi = γCi + (1− γ)R (7)

whereM i is the averaged MSA computed as described in Equation (3) from the sequences in iteration
i, η = 0.90, and γ = 0.3. This process is illustrated by the light blue arrows in Figure 10.

Once training is complete, we use w to assign a contact prediction score between each pair of
positions. The score cij measures the pairwise interaction between positions i and j, and c̄ij is score
after applying APC correction [10],

cij =

(∑
x,y

wij(x, y)2

)1/2

and c̄ij = cij −
∑
k cik

∑
k ckj∑

k,` ck`
. (8)

D.3 Further analysis of SMURF alignments and contact predictions

RNA contact prediction. By comparing the positive predictive value (PPV) for different numbers
of predicted contacts, we see that SMURF consistently yields a higher PPV for RFAM family RF00167
(Figure 2b). For RF00010, it starts off higher but then drops off faster, leading to a lower overall AUC.
Upon a visual inspection of the contact predictions, MLM-GREMLIN evidently generates more false
positive predictions in seemingly random locations. On the other hand, SMURF largely resolves this
issue, even for RF00010, presumably as a result of a better alignment. Interestingly, SMURF’s lower
AUC for RF00010 can be attributed to a concentration of false positive predictions near the 5’ and
3’ ends. It remains unclear whether these represent a coevolution-based structural element that was
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not present in the specific RNA sequence deposited in PDB or whether these arise from artifacts of
the learned alignment. Due to the relatively small number of RNAs with known 3D structures, we
employed SMURF using the hyperparameters optimized for proteins; fine-tuning SMURF for RNA
could improve performance.

Protein contact prediction and alignments. Next, we investigated the contact predictions and
alignments produced by SMURF. Figure 11 and Figure 12 illustrate the contact predictions, corre-
sponding positive predictive value (PPV) plots, and alignments for the three families that improved
the most and least (respectively) under SMURF as compared to MLM-GREMLIN. The poor per-
formance of SMURF on 3LF9A can be attributed to the misalignment of the first ≈ 25 residues of
many sequences (including the one illustrated) to positions ≈ 75 to 100 of the reference rather than
to the first 25 positions of the reference. This is likely because the gap penalty for leaving positions
≈ 25 to 75 unaligned outweighs the benefit of aligning to beginning of the reference. Since our code
computes a local alignment, there is no penalty for leaving positions at the beginning of the reference
unaligned. Perhaps using our implementation of Smith-Waterman with an affine gap penalty would
lead the network to learn a less severe penalty for long gaps and arrive at correct alignment. For
the most improved families, we see that SMURF tends to predict fewer false positive predictions in
seemingly random positions, as observed for RNA.

Performance on smaller alignments. Finally, to test whether SMURF requires a deep alignment
with many sequences, we ran SMURF on 99 protein families from [3] with at most 128 sequences.
As illustrated in Figure 13, the performance of SMURF and MLM-GREMLIN are comparable even
for these families with relatively few sequences.

D.4 SMURF training and hyperparameters

Throughout our hyperparameter search, we kept the following parameters constant: fraction of
residues masked at 15%, number of convolution filters at 512, convolution window size at 18,
regularization λ in Equation (6) at 0.01. Our hyperparameter search consisted of three stages. We
initialized the gap penalty as −3 and allowed the network to learn a family-specific gap penalty.

1. First we ran a grid search with on all 190 families in the training set with learning rates
{.05, 0.10, 0.15}, batch sizes {64, 128, 256}, and iterations {2000 BasicAlign /1000 Train-
MRF, 3000 BasicAlign /3000 TrainMRF }. For comparison, we ran MLM-GREMLIN with
the same range of learning rates and batch sizes and 3000 iterations. We found that batch
size 64 and learning rate 0.05 performed best for MLM-GREMLIN.

2. Then we restricted to a smaller set of families to perform a more extensive hyperparameter
search; we included the seven families where MLM-GREMLIN’s AUC was less than
0.45 (3AKBA, 3AWUA, 5BY4A, 4C6SA, 3OHEA, 3ERBA, 4F01A) and six families
where SMURF consistently performed substantially worse than MLM-GREMLIN (1NNHA,
3AGYA, 4LXQA, 1COJA, 2D4XA, 4ONWA). We considered the following hyperparameter
options: learning rates {.05, 0.10}, batch sizes {64, 128, 256}, iterations {2000 BasicAlign
/1000 TrainMRF, 2000 BasicAlign /2000 TrainMRF, 3000 BasicAlign /1000 TrainMRF
}, MSA memory fraction η ∈ {0.90, 0.95}, and MSA query fraction γ ∈ {0.3, 0.5, 0.7}.

3. Based on the results of the above hyperparameter search on the select families, we performed
a final hyperparameter search on the entire training set. We noticed that performance was
better for larger batch sizes, but it was not always possible to run the large batch sizes on
our 32 GB GPU for families with longer sequences. For our final hyperparameter search,
we used the largest batch size of {64, 128, 256} that would fit in memory for each family.
We set η = 0.90, γ = 0.3, and selected 3000 BasicAlign /1000 TrainMRF iterations
because these parameters lead to relatively strong results across the restricted set of families.
Learning rate 0.10 outperformed learning rate 0.05 on the restricted set, but learning rate
0.05 generally outperformed learning rate 0.10 in the initial grid search on the full training
set. We ran a final test with the aforementioned parameters and the two learning rates on the
entire training set, and found that learning rate 0.05 was optimal overall.
We also ran 4000 iterations of MLM-GREMLIN with predetermined optimal parameters:
learning rate 0.05 and batch size 64. We found very similar performance between 3000 and
4000 iterations of MLM-GREMLIN. We chose to compare SMURF to 4000 iterations of
MLM-GREMLIN so that both methods were trained for 4000 iterations.
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Figure 11: Three most improved protein families. Left: Comparison of contact predictions between
SMURF (red) and MLM-GREMLIN (blue). Gray dots represent PDB-derived contacts, circles
represent a true positive prediction, and x represents a false positive prediction. Middle: The positive
predictive value (PPV) for different numbers of top N predicted contacts, with N ranging from 0
to 2L. Right: Comparison of the alignment of a random sequence in the family to the reference
sequence. Red indicates aligned pairs that appear in the SMURF alignment, but do not appear in the
given alignment. Blue indicate aligned pairs that appear in the given alignment, but do not appear the
alignment found by SMURF.

D.5 Ablation in SMURF

We performed an ablation study in which we removed three features of SMURF (Figure 14).

First we replaced smooth Smith-Waterman with a differentiable “pseudo-alignment" procedure,
similar to [5]. Instead of applying smooth Smith-Waterman to the similarity matrix, we computed
a pseudo-alignment by taking the softmax of the similarity matrix row-wise and column-wise,
multiplying the resultant matrices, and taking the square root. This technique performed far worse
than SMURF.
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Figure 12: Three worst performing protein families (as compared to MLM-GREMLIN). Left:
Comparison of contact predictions between SMURF (red) and MLM-GREMLIN (blue). Gray dots
represent PDB-derived contacts, circles represent a true positive prediction, and x represents a false
positive prediction. Middle: The positive predictive value (PPV) for different numbers of top N
predicted contacts, with N ranging from 0 to 2L. Right: Comparison of the alignment of a random
sequence in the family to the reference sequence. Red indicates aligned pairs that appear in the
SMURF alignment, but do not appear in the given alignment. Blue indicate aligned pairs that appear
in the given alignment, but do not appear the alignment found by SMURF.

Next, we consider the roll of BasicAlign. We found that skipping BasicAlign and running TrainMRF
for 4000 iterations degraded performance, thus indicating the importance of the inital convolutions
found in BasicAlign.

Finally, we found that changing the query between iterations did not improve results. Preliminary
results on the training set had suggested that changing the query improved results for some families.
Further investigation is needed to determine the benefits changing the query between iterations.
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Figure 13: Performance comparison for families with at most 128 sequences. Left: Scatter plot of the
AUC of the top L predicted contacts for SMURF versus MLM-GREMLIN. Right: Histogram of the
difference in AUC between SMURF and MLM-GREMLIN.
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Figure 14: Contact AUC for SMURF versus ablated methods. Each point represents one family in
the test set.
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Figure 15: Optimization trajectories for CASP targets in Figure 3. The First column is the RMSD
(distance to ground truth) monitored during optimization. The second column is the predicted LDDT
(confidence metric) being maximized. The third column highlights the top 2 trajectories select by
best terminal pLDDT. The red lines are the RMSD and blue lines are the pLDDT.
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Before After

Figure 16: Optimization trajectories for CASP target T1043-D1. the scatter plot shows the sampled
pLDDT and RMSD across all trajectories. The dotted lines show the initial pLDDT and RMSD (root-
mean-squared-distance to native structure) using the MSA from MMseqs2. The native structure is
rainbow colored, and the predictions are overlaid and colored white. After maximizing the confidence
metric, the structure with the max pLDDT (circled) is shown in the after column. For other targets
see Figure 3.
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