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Abstract

We explore the use of modern variational autoencoders for generating protein
structures. Models are trained across a diverse set of natural protein domains. Three-
dimensional structures are encoded implicitly in the form of an energy function
that expresses constraints on pairwise distances and angles. Atomic coordinates
are recovered by optimizing the parameters of a rigid body representation of
the protein chain to fit the constraints. The model generates diverse structures
across a variety of folds, and exhibits local coherence at the level of secondary
structure, generating alpha helices and beta sheets, as well as globally coherent
tertiary structure. A number of generated protein sequences have high confidence
predictions by AlphaFold that agree with their designs. The majority of these have
no significant sequence homology to natural proteins.

Most designed proteins are variations on existing proteins. It is of great interest to create de novo
proteins that go beyond what has been invented by nature. A line of recent work has explored
generative models for protein structures [1, 2, 3, 4, 5, 6]. The main challenge for a generative
model is to propose stable structures that can be realized as the minimum energy state for a protein
sequence, i.e. the endpoint of folding. The space of possible three-dimensional conformations of a
protein sequence is exponentially large [7], but out of this set of possible conformations, most do not
correspond to stable realizable structures.

In this work we explore the use of modern variational autoencoders (VAEs) as generative models
of protein structures. We find that the models can produce coherent local and global structural
organization while proposing varied and diverse folds. We use AlphaFold to assess the viability of
sampled sequences, finding that many sequences are predicted to fold with high confidence to their
designed structures. To assess the novelty of the generated sequences, we search sequence databases
including metagenomic information for homologous sequences, finding no significant matches for a
large fraction of the generations.

1 Modeling

1.1 Overview

Figure 1 presents an overview of the approach. The structure is implicitly encoded as the min-
imum of an energy over possible conformations of the protein chain. We write the structure
x∗ = argminx E(x; z) + R(x) as the outcome of this minimization. E(x; z) is the output of
a decoder. Optionally R(x) subsumes additional energy terms. During training an encoder and
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Figure 1: Overview of the method. Each protein structure is represented as a discretized distance
map and set of angular coordinates. The model is trained to reconstruct natural protein structures.
The decoder output can be interpreted as specifying an energy function over three-dimensional
conformations of the protein encoding the structure at its minimum. New structures are generated
by passing samples from the prior through the decoder to obtain an energy function specifying the
structure. Three-dimensional coordinates are obtained by fitting the angular degrees of freedom of an
idealized rigid-body representation of the protein chain to minimize the energy.

decoder are fit to natural structures to learn a discrete latent code z. To produce samples, new
codes are drawn from a learned autoregressive prior pθ(z), and passed through the decoder to obtain
E(x; z).

We compare with several other VAE modeling approaches. Structures are represented through a
discretized pairwise distance map and set of angular coordinates. Pairwise representations have
been useful in structure prediction [8, 9, 10], and have been recently applied to generative models of
protein structures [11, 1]. We use Rosetta to perform the minimization using the all-atom ref2015
score function [12]. Related work is further discussed in Appendix A of the Appendix.

1.2 VAE Models

We consider several VAE model variants to learn the energy E(x; z). All models use a convolutional
encoder-decoder architecture unless otherwise specified. We train a downsampling convolutional
encoder q(z|x) to compress the structure into a latent variable with a prior p(z); and an upsampling
convolutional decoder E(x; z) that maps the latent variable into a structure. We fix models to work
on 128 length for simplicity, training on a dataset of full-chain SCOP [13] domains, filtered to the
length cutoff.

We present Conv-VAE and MLP-VAE as classic VAE [14] baselines with a single latent variable,
using a convolutional network or MLP for the encoder-decoder. HVAE is a hierarchical VAE
[15, 16, 17, 18]; VQ-VAE is a VQ-VAE architecture [19, 20]; VQ-VAE-BB and HVAE-BB are
versions that learn backbone dihedral angles instead of interresidue angles.

We use Rosetta to solve the minimization problem and obtain a structure. Similar to Yang et al. [21],
we input E(x; z) as an additive energy term with ref2015, and find a minimum energy poly-alanine
chain that fits the energy landscape. Further details on architectural and training choices are described
in Appendix B.1.

Across experiments we observe that validation loss does not reflect the quality of generated structures.
As a result we use the Rosetta score function for model selection. We evaluate models using a variety
of metrics, including the Rosetta score function values, medium and long-range contacts, hydrogen
bonds, and secondary structure elements.
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Table 1: Comparison of models. Metrics computed across generated structures. R(x) < 0 is the
percent of all generations with negative Rosetta energy. R(x) is the average absolute value of Rosetta
energies. “MR/LR contacts” is the average number of medium or long range contacts, divided by
number of residues. “MR/LR polar” is the average number medium or long range hydrogen bonds,
divided by number of residues. % helix and % sheet measures the average proportion of α-helices
and β-sheets. VQ-VAE generates structures with low Rosetta energies, having long range contacts
and hydrogen bonds, and containing β-sheets.

% R(x) <
0

R(x) Avg MR/LR
contacts

MR/LR
polar

% α-helix %
β-sheets

MLP-VAE 0.0043 0.7301 1.5033 0.0329 0.0487 0.0138
Conv-VAE 0.0223 0.3408 1.5426 0.0277 0.1273 0.0154

HVAE 0.0817 0.3526 1.1066 0.0291 0.3229 0.0169
HVAE-BB 0.3127 0.0612 1.4830 0.0312 0.4194 0.0161

VQ-VAE 0.2140 0.2066 1.6849 0.0602 0.3387 0.0720
VQ-VAE-BB 0.1955 0.1671 1.9890 0.0879 0.2677 0.1080
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Figure 2: The models generate diverse structures. (Left) Pairwise TM-scores between 180 generated
structures. The majority of pairwise TM-scores are lower than the value 0.5 which roughly corre-
sponds to the same fold [22]. (Right) t-SNE [23] plot of the structural space covered by the same
proteins. The proteins clearly cluster by category. Each category has structures with higher and lower
TM-score to its nearest neighbor in PDB (color-code), indicating the generated structures cover a
range of similarity with natural structures.

2 Experiments: Structure Generation

Qualitative inspection As expected, the single latent variable models find it difficult to capture
sharpness in the distogram. The associated generations tend to have blurred patches. Visually, HVAE
and VQ-VAE both seem to generate sharper and more distinct distograms. To benchmark model
fidelity, we generate 3000 samples from E(x; z), with z sampled from the model’s respective priors,
and find the minimum energy structure using the techniques detailed in Section 1.1. We see that
VQ-VAE is the only one that successfully generates high fidelity β-sheets. Examples can be found in
Figure S6 and Figure S7. For visualization we select random generations with R(x) < 0 and MR/LR
contacts > 1.

Quantitative metrics of Rosetta-folded structures Table 1 and Figure S8 compare the models.
Large differences in the quality of generations are observed favoring the VQ-VAE models. Although
HVAE-BB seem to be best in terms of energy favorable structures, a large proportion of its generated
structures are α-helices. For VQ-VAE-BB, we see a large increase in the number of MR/LR contacts
and long range hydrogen bonds, Table 1 summarizes data on the quality of generated structures. The
specifics of the metrics measured are detailed in Appendix B.2

Novelty and diversity In Figure 2, we use TM-scores between the structures generated with VQ-
VAE-BB, and with respect to all of PDB, to evaluate the diversity and novelty of the generated
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Figure 3: Each row is an individual generation, selected for AlphaFold modeling confidence. (a)
argmax of the distogram proposed by our model. (b) Distogram of the AlphaFold folded structure.
(c) Superposition of designed structure (green) with AlphaFold prediction. (d) Superposition of
designed structure (green) with nearest match in PDB by TM-Score. (e) Hydrophobic residues in
purple, hydrophilic in white, proteins exhibit hydrophobic core. Most generations have few sequence
matches, and low sequence identity with closest match. Full image is found in Figure S10

structures. For generated structures, we apply a filter to discard unlikely proteins, as detailed under
“Qualitative inspection”. For Figure 2, 60 structures are randomly sampled per structure category.
All generated structures are also compared against all known structures in PDB, and the highest
TM-score is reported as “TM-score to PDB Nearest Neighbor (NN)”. The model generates diverse
protein structures with low structural similarity, except in the “Mainly Beta” category.

3 Experiments: Protein Design

We ask whether generated structures can be realized by an amino acid sequence as the endpoint
of folding. We design sequences for 40 structures and use AlphaFold to predict their structures.
AlphaFold produces high confidence models for 9 of the designed sequences. Of these, 8 proteins had
low (< 2.6A) RMSD to AlphaFold predicted structures. We show these proteins in Figure 3. Details
on the design methodology can be found in Appendix B.3

Most of the designed sequences do not have homologous sequences in UniRef90 or MGnify [24, 25].
We ran JackHMMER [26] against Uniref90 and MGnify and found no significant sequence matches
for 5 designed structures, matches with very low sequence identity (15%) for 2 designed structures,
and 75 matches with maximum sequence identity of 26% for the final structure. To confirm this
finding, we also ran FastDesign against 40 randomly selected natural protein chains between length
64-128. Sequence designs for natural structures tended to result in many more JackHMMER hits
against UniRef90, with a higher degree of sequence similarity, shown in Figure S9.

4 Conclusions

We perform a systematic study of deep generative models for designing protein structures. We find
that generative models are able to capture local secondary structure as well as globally coherent fold
topology, when trained on a diverse set of protein domains. We find that generated structures can be
realized by sequence designs that are predicted to correctly fold with high confidence by AlphaFold.
Although the generations are structurally similar to existing folds, sequences designed to realize
them are often novel. This suggests that neural generative models are capable of generalizing beyond
simply recapitulating natural proteins.

4



References

[1] Namrata Anand and Possu Huang. Generative modeling for protein structures. Advances in
Neural Information Processing Systems, 31, 2018. URL https://papers.nips.cc/paper/
2018/hash/afa299a4d1d8c52e75dd8a24c3ce534f-Abstract.html.

[2] Raphael R Eguchi, Namrata Anand, Christian Andrew Choe, and Po-Ssu Huang. Ig-vae:
Generative modeling of immunoglobulin proteins by direct 3d coordinate generation. bioRxiv,
2020.

[3] Joe G. Greener, Lewis Moffat, and David T. Jones. Design of metalloproteins and novel
protein folds using variational autoencoders. Scientific Reports, 8(1):16189, November 2018.
ISSN 2045-2322. doi: 10.1038/s41598-018-34533-1. URL https://www.nature.com/
articles/s41598-018-34533-1.

[4] Ivan Anishchenko, Tamuka M. Chidyausiku, Sergey Ovchinnikov, Samuel J. Pellock, and David
Baker. De novo protein design by deep network hallucination. bioRxiv, page 2020.07.22.211482,
July 2020. doi: 10.1101/2020.07.22.211482. URL https://www.biorxiv.org/content/
10.1101/2020.07.22.211482v1.

[5] Namrata Anand, Raphael Eguchi, and Po-Ssu Huang. Fully differentiable full-atom protein back-
bone generation. March 2019. URL https://openreview.net/forum?id=SJxnVL8YOV.

[6] Mostafa Karimi, Shaowen Zhu, Yue Cao, and Yang Shen. De novo protein design for novel
folds using guided conditional wasserstein generative adversarial networks (gcwgan). bioRxiv,
page 769919, 2019.

[7] Cyrus Levinthal. How to fold graciously. Mossbauer spectroscopy in biological systems, 67:
22–24, 1969.

[8] Jianyi Yang, Ivan Anishchenko, Hahnbeom Park, Zhenling Peng, Sergey Ovchinnikov, and
David Baker. Improved protein structure prediction using predicted inter-residue orientations.
bioRxiv, page 846279, 2019.

[9] John Jumper, R Evans, A Pritzel, T Green, M Figurnov, K Tunyasuvunakool, O Ronneberger,
R Bates, A Zidek, A Bridgland, et al. High accuracy protein structure prediction using
deep learning. Fourteenth Critical Assessment of Techniques for Protein Structure Prediction
(Abstract Book), 22:24, 2020.

[10] Jinbo Xu. Distance-based protein folding powered by deep learning. Proceedings of the National
Academy of Sciences, 116(34):16856–16865, August 2019. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1821309116. URL https://www.pnas.org/content/116/34/16856.

[11] Raphael R. Eguchi, Namrata Anand, Christian A. Choe, and Po-Ssu Huang. IG-VAE: Generative
Modeling of Immunoglobulin Proteins by Direct 3D Coordinate Generation. bioRxiv, page
2020.08.07.242347, August 2020. doi: 10.1101/2020.08.07.242347. URL https://www.
biorxiv.org/content/10.1101/2020.08.07.242347v1.

[12] Andrew Leaver-Fay, Michael Tyka, Steven M. Lewis, Oliver F. Lange, James Thompson,
Ron Jacak, Kristian Kaufman, P. Douglas Renfrew, Colin A. Smith, Will Sheffler, Ian W.
Davis, Seth Cooper, Adrien Treuille, Daniel J. Mandell, Florian Richter, Yih-En Andrew Ban,
Sarel J. Fleishman, Jacob E. Corn, David E. Kim, Sergey Lyskov, Monica Berrondo, Stuart
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A Related Work

Deep generative models A major, long standing goal of deep learning is to represent complex
distributions over high dimensional data with a rich hierarchical model [27, 28, 29]. Notable success
was achieved with deep generative models with latent variables such as Generative Adversarial
Networks (GANs) [30] and Variational Auto-Encoder (VAE) [14]. Vector Quantized VAE (VQ-VAE)
[19, 20] finds that discretizing the latent variables to enable higher resolution and fedelity generations.
In another notable extension to the original VAE formulation, [17, 15, 18] suggest that hierarchies
are the most important part of latent variable models.

Generative models for protein structures While there has been breakthrough progress in deep
learning for structure prediction [31, 32, 21, 9], in comparison, little work has been done on generative
modeling of protein structures.

There is increasing interest in applying differentiable learning to protein structure generation to
create novel proteins. There have been initial successes using GANs and VAEs in generating protein
structures [1, 5, 6, 2]. Alternatively, Anishchenko et al. [4] uses a supervised structure prediction
model with a “hallucination” loss to jointly design structures and sequences.

Despite the initial success, these methods fall short of the promise of a general-purpose generative
model for protein structure. Previous methods would typically focus on generating novel fragments,
with not enough global coherence to achieve folding structures [1]. Most methods also consider
proteins or fragments of limited length [1, 5], are trained on structures with diversity limited to a
few folds like immunoglobulins [2]. The hallucination approach of Anishchenko et al. [4], despite
its novelty and promising results, has not shown to produce generations with no known sequence
homologs.

Slightly further removed from protein structure design (the focus of this paper), are methods to
use generative sequence models to generate protein sequences. VAEs on amino acid sequences
have been applied in several problem settings; VAEs and deep sequence models can capture the
sequence diversity of specific protein families without explicitly conditioning on structure information
[33, 34, 35, 36, 37, 3]. A more related problem setting is designing protein sequences explicitly
conditioned on a backbone structure as in [38, 39, 40, 41]. Finally, conventional approaches to protein
design rely on expert design of structures [42, 43], and use the Rosetta toolbox [12] with fragment
databases to find sequences that will fold in those structures [44, 45, 46].

B Appendix

B.1 Training and model details

As a baseline, we include a basic encoder-decoder model, where q(z|x) is a ResNet according to He
et al. [47]. For Conv-VAE, E(x; z) is composed of transposed convolutional blocks. For MLP-VAE,
E(x; z) is a factorized residual MLP architecture, similar to Tolstikhin et al. [48] - where there are
independent MLPs that run across the height, width, and channel dimensions respectively. We use
the classical VAE formulation [14] to minimize the Evidence Lower Bound objective.

HVAE is a hierarchical VAE proposed by [15, 16, 17, 18]. Although we tried up to 20 levels of
latent variables, we discovered the generations were not as robust and tend to overfit, producing local
artifacts without much global coherence, despite being able to have near-perfect reconstruction loss.
We settled on a model with just 3 spatial latent variable hierarchies. q(z|x) is a ResNet, and E(x; z)
is composed of transposed convolutional blocks.

VQ-VAE is a VQ-VAE architecture, proposed by [19, 20]. One change we introduce is to train a
transformer, similar to Ramesh et al. [49], to model the prior of the model. Here, we first train q(z|x)
and E(x; z) by setting z = VQ(q(z|x)), with the vector quantizer block introduced in Oord et al.
[19]. Then, we train a transformer prior pθ(z) = ΠL

i=0
pθ(zi|z<i), where L is the length of the prior.

VQ-VAE-BB and HVAE-BB are versions that learn backbone dihedral angles instead of interresidue
angles. We follow the work of Senior et al. [32] in learning a joint phi-psi backbone angle, which
then we convert into a von Mises distribution as a part of E(x; z).

In all cases, the encoder resnet is a stack of several bottleneck residual blocks [47] followed by a
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Figure S4: Top Distograms: we filter generations to negative rosetta energy and greater than 1
MR/LR contacts per residue. These are a random sample of such distograms

downsample, repeated 7 times until we obtain a 1 × 1 map, which is fed into the decoder as the
initial latent variable. The HVAE and VQ-VAE have shortcut connections at coarser resolutions from
the encoder to the decoder, where each shortcut connection is either a Vector Quantization layer or
stochastic sampling layer via the reparameterization trick. These intermediate latent variables are
output at up to a 32× 32 resolution.

Model selection was done in all cases by a randomized hyperparameter sweep, generating 30
structures, and selecting the model with the lowest Rosetta energy of that model class.

The output of the decoder trunk is always routed to an individual 2 layer MLP to output the final
predictions for each of the distogram and (interresidue or backbone) angle predictions. Backbone
angles are predicted via averaging across the heights and width of the distogram, and then averaging
the logits obtained from each of the height and width predictions.

We also found that for spatial latent variables, it was important to symmetrize the latent variables
post-hoc, as well as symmetrizing the predictions via a simple average.

We explored the following hyperparameters for all models:

• Architecture (see next paragraphs). This is defined by the number of residual blocks per
resolution (“stack” of residual blocks, between each of the 7 downsampling steps).

• Initial channel dimension (64, 128, 196, 256).

• Most resnets increase in the channel dimension as the encoder decreases in resolution, and
vice versa for the decoder. We varied with which layer to start increasing the channel
dimension. We start doubling the channel dimension at resolution (32× 32, 16× 16,8× 8)
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Figure S5: Top Structures: Corresponding to Figure S4, we show how each of the distograms fold
under constrained folding. These structures are selected to have negative Rosetta energy and > 1
MR/LR contacts per residue We color α-helices red, β-sheets blue, and coils green. Only 3 such
structures out of 3000 passed such a filter for MLP-VAE. Only VQ-VAE style models are able to
generate many β-sheets.

• Parameters in distogram, angle, and sequence prediction branches. We tried a simple linear
model, a MLP, and a few layers of dilated convolutions, as well as varying widths. We chose
the MLP head in all cases.

• Representation of the output space. We also implemented the discrete logistic mixture
distribution from Salimans et al. [50], but we choose the typical categorical distribution.

• We use Adam in all cases but sweep across different learning rates. We selected e ∗ 10−4 in
all cases, as it seemed to train stably for all models.

Architecture specification In this section, we will specify the encoder and decoder with a list
of 8 numbers, corresponding to the number of bottleneck residual blocks He et al. [51] between
the 7 downsampling steps. The first number always refers to the blocks that work at a 128 × 128
resolution, and the last number always refers to the block that works at a 1× 1 resolution. There is a
downsampling operation between the stacks of blocks. We mainly varied whether the majority of the
compute is at the coarse or fine resolutions. The final choices are specified below.

Conv-VAE The encoder is the same as MLP-VAE. The decoder consists of 61 convolutional blocks
of size 3 × 3. We upsample and replicate the single latent variable to the 128 × 128 sized output
concatenated with a Sinusoidal positional embedding. This model is 89M parameters.

For MLP-VAE and Conv-VAE baselines, we experimented with annealing the coefficient on the KL
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Figure S6: Random distograms: We show a random sample of all generated distograms by each
model

divergence term from 0 at the start of training. We found that annealing was critical to stable training
- the cyclic annealing schedule of Fu et al. [52] was helpful in stable model training across a range of
hyperparameters, so this was used in all models reported, with 4 cycles through the first half of the
training. We experimented with large models, batch sizes, learning rates, and latent variable sizes. We
also experimented with VAE variants like β-VAE [53] and Deterministic Regularized Autoencoders
[54], but found little effect on the generation quality.

MLP-VAE The encoder is a stack of convolutional blocks: [3, 3, 3, 3, 3, 3], with an intial
hidden size of 64 and doubling every time a downsample.

For MLP-VAE, we found it impossible to train with a flattened structure. Taking inspiration from
Tolstikhin et al. [48], we run three residual MLP layers, across the height, width, and channel
dimensions. We found that this was able to converge more consistently.

Define an residual MLP block as a sequence of (LayerNorm, Linear, GeLU, Linear) operations. A
MLP stack is 3 MLP blocks, the first over the height dimension, the second over the width dimension,
and the third over the channel dimension.

We upsample and replicate the single latent variable to the 128× 128 sized output concatenated with
a Sinusoidal positional embedding. The decoder is then 21 MLP stacks with a hidden dimension of
128. This model is 88M parameters.

HVAE The HVAE model, results in a step function in generation quality over previous models,
generating a much larger proportion of α-helices.

In order to implement the hierachical VAE as specified in Vahdat and Kautz [55], Child [56], we
used an upsampling convolutional decoder. Between each stack, there is an upsampling operation. In
both HVAE and HVAE-BB, we output a 1× 1 latent variable, and 2 sets of latent variables at a 4× 4
resolution, one at the start of the stack and one at the end.
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Figure S7: Random structures: We show, correspondingly to Figure S6, the results of constrained
folding on those distograms. We color α-helices red, β-sheets blue, and coils green. Most baseline
generations are unstructed coils.

The encoder for HVAE is [4, 4, 4, 8, 8, 32, 4, 1]. The decoder is [4, 4, 4, 8, 12,
32, 4, 1]. The model is 101M parameters.

The encoder for HVAE-BB is [1, 1, 4, 8, 8, 24, 20, 1]. The decoder is [1, 4, 8, 12,
12, 28, 20, 1]. The model is 115M parameters.

The model architectures were determined via random hyperparameter sweeps as specified above. We
also tried to vary the number of output latent variables, trying up to 20. The reconstruction loss and
ELBO did indeed improve with the number of latent variable scales, but the generation quality did
not.

VQ-VAE Similar to the HVAE, we output a latent variable at specific scales. This latent variable is
quantized through the Vector Quantization layer of Oord et al. [57].

For the decoder, we stack all encoded latent variables, upsampled to the finest resolution output by
the encoder, and run it through the same upsampling convolutional blocks as described above. We
use 512 quantized latent variables with dimensionality 64 in all cases.

For VQ-VAE, the encoder is [2, 2, 2, 2, 2, 2, 2, 1], outputting latent variables at the 1× 1
and 32× 32 scales. The decoder is [4, 4, 4, 4], since the input starts at the 32× 32 scale. The
model is 114M parameters.

For VQ-VAE-BB, the encoder is [2, 2, 2, 2, 2, 2, 2, 1], outputting latent variables at the
1× 1, 4× 4 and 16× 16 scales. The decoder is [4, 4, 4, 4], since the input starts at the 32× 32
scale. The model is 115M parameters.

In both cases, for pθ(x), we use an autoregressive, 6 layer vanilla transformer decoder [58] to learn
the prior. We use 6 layers with a channel dimension of 512 over 8 heads. This worked robustly, so
we only searched through dropout in order to better regularize our models. However, we found that
models overfit to the training set provided better generations, so we report only results with the overfit
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Figure S8: Gaussian kernel density estimate plot of the proposed metrics, for structures generated
with different models.

priors in this work. More exploration to explain this phenomenon is needed. The learned priors are
20M parameters in all cases.

Training procedure We use stratified sampling at the family level during training. Stratified
sampling has been shown to be critical to training large protein language models, though we did
not explore uniform sampling [59]. We also tested results on fold and superfamily-level structural
heldout sets, though we found that there was too much noise given the small dataset. Furthermore,
since their losses were not correlated to Rosetta folding energies, so we decided not to report on their
exact numerical values.

We fix models to work on 128 length proteins. Larger proteins are ignored, as we theorized that
sequence-level cropping would compromise structural integrity. Smaller proteins are centered and
padded.

Variable length generation We use a heuristic to generate structures of varying lengths. We fit
a head on the amino acid identity of each position, and we train with a "out-of-bounds" label for
padding tokens. Then, during generation, we noticed that the model consistently generated centered
distograms. Therefore, we used the heuristic that the generated protein starts at the first position when
p(out-of-bounds) < .2, and ends at the last position when p(out-of-bounds) < .2.

Compute Costs To find optimal hyperparameters, we used tens of GPUs for 2 days at a time. Most
models can be trained on a single V100 GPU in a few days. Each FastDesign decoy takes from 3-6
hours to run on a single core. Therefore, one round of designs for 40 generations takes approximately
1,500 CPU days.

B.2 Structure generation details

Metrics The metrics presented in Table 1 are as follows.

R(x) is from Rosetta’s ref2015 energy function after the constrained folding procedure. %R(x) < 0
is the percent of all generations with negative Rosetta energy. In general, the more negative the
energy, the better. Structures with positive energy tend to not be well formed, exhibiting disordered
secondary structure.

We define a Medium or Long Range (MR/LR) contact to be when two residues σi, σj , have sequence
separation in the amino acid chain |i − j| > 12 and a Cβ-Cβ distance of less than 8Å. We then
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normalize this by the length of the protein and average to obtain the MR/LR contact score. The
MR/LR polar contacts similar to Cβ-Cβ contacts, except that we use Kunzmann and Hamacher [60]
to find hydrogen bonds via the Baker-Hubbaard algorithm [61] on the generated polyalanine chain.
Both of these metrics are a measure of how compact and well-structured the generated proteins are.

Finally, % α-helix and % β-sheet measures the average proportion formed in generated structures.
The categories are based on secondary structure assignment with DSSP [62]. These two secondary
structure elements are a stabilizing part of protein structures, and generations without decent propor-
tions of helices and sheets are disordered and are unlikely to exist in nature.

Constraints on interresidue distances and orientations We follow the procedure of Yang et al.
[21] to incorporate constraints into Rosetta folding, with some variations:

1. Generate constraints given the distogram and interresidue angles. (Renormalize distrogram
such that the minimum logit is -10).

2. Coarse grained folding (9 independent trajectories using centroid energy function). Followed
by fine grained all-atom fold of all 9 trajectories.

3. Best trajectory selected by Rosetta energy.

Constraints on backbone dihedral angles Some models incorporate constraints on the backbone
dihedral angles rather than the interresidue orientations. We discretize the phi/psi dihedral angles of
the backbone into a 25 by 25 grid. Then 10000 samples are drawn from the grid, and a Von Mises
distribution is fit independently to the marginals for phi and psi. The constraints are upweighted by a
factor of 1000 to balance them with the distance contraints.

B.3 Design Verification

Because FastDesign is an expensive step requiring many monte-carlo runs, we only experimented
with the best performing model and we try to filter our structures for the most likely to fold ones.
Therefore, we sample 40 random structures that pass a goodness filter that we heuristically define as
R(x) < −0.1, MR/LR contacts more than 1.5 per residue, and coils consisting of less than half the
protein. This criterion only passes around 5% of the generations.

Given a generated structure, first we run FastDesign to generate up to 200 sequences. We
run it with RosettaScripts [63], allowing all amino acids and extra rotamer angles with
ALLAA EX 1 EX_CUTOFF 3. We also use the linear memory interaction graph to conserve memory,
and default databases provided by Rosseta.

We run AlphaFold with default parameters. We randomly choose the predicted LDDT > 0.7 threshold
- on average it means the model should be correct until up to 2Å. Only one structure that passes
the predicted LDDT > 0.7 threshold did not agree with Alpafold. For many of the structures that
Alphafold was not confident on, we discover close matches in PDB, so it may be the case that
FastDesign was not able to find a suitable sequence for our generated structure. We found that
AlphaFold predicted confident structures on only 9 of the sequences designed. Of these, 8 proteins
had high (>.75) TM-scores to AlphaFold predicted structures. We show these proteins in Figure S10.

Figure S9 shows many of the designed structures have very low sequence identity with Uniref90.
These are unfiltered designs, so it is unclear if they are all realizable, although in Figure 3 we show
that most structures agreed on by our design and AlphaFold have no MSAs in common.
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Figure S9: Behavior of FastDesign sequences on natural proteins vs our designs, both starting from
polyalanine chains. Sequence identity is computed with respect to the closest homolog. Although
both show around half have no nearby sequences in Uniref, FastDesign sequences for natural
proteins tend to have many more homologs. Additionally, the sequence identity of homologs are
much higher for natural proteins than generated proteins.
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Figure S10: All examples for Figure 3. The last row is the only disagreement our model has
with AlphaFold. Several designs are β-barrels of similar distograms - a weakness of our model
as demonstrated in Figure 2. We note that although the argmax look exceeding similar, the full
distogram distributions are different enough to produce different nearest neighbors in PDB for each
of the structures.
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