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Abstract

In response to pathogens, the adaptive immune system generates specific anti-
bodies that bind and neutralize foreign antigens. Understanding the composition
of an individual’s immune repertoire can provide insights into this process and
reveal potential therapeutic antibodies. In this work, we explore the application
of antibody-specific language models to aid understanding of immune repertoires.
We introduce AntiBERTy, a language model trained on 558M natural antibody
sequences. We find that within repertoires, our model clusters antibodies into
trajectories resembling affinity maturation. Importantly, we show that models
trained to predict highly redundant sequences under a multiple instance learning
framework identify key binding residues in the process. With further development,
the methods presented here will provide new insights into antigen binding from
repertoire sequences alone.

1 Introduction

The adaptive immune system is capable of generating robust responses to foreign pathogens. This
robustness is provided in part by the immense diversity of antibodies that can be generated. Diversity
is initially introduced to antibody sequences through V(D)J gene recombination. As the immune
response progresses, antibodies capable of effective neutralization are developed through an antigen-
driven process called affinity maturation. In this process, B-cells producing antibodies with high
antigen affinity are selectively expanded then mutated to give rise to successive generations of
antibodies.

Immune repertoire samples provide a snapshot of an individual’s antibody sequence population.
Typically, donors provide samples of B-cells from blood or lymph, and the antibodies produced by
these B-cells are identified via next-generation sequencing [5]. During an immune response, as many
as half of the antibodies within the repertoire may exhibit antigen affinity [14]. Among these binding
antibodies, the most frequently occurring sequences tend to be effective binders [15]. However,
beyond the small subset of highly expanded sequences, redundancy is a poor indicator of binding
capability [14].

Models adopted from natural language processing and trained on massive sets of protein sequences
have been shown repeatedly to learn rich representations of protein sequences [4, 16]. Such models
have been used for mutational variant prediction [13], to generate embeddings for structure prediction
[1], and even to study evolution within protein families [6]. However, natural proteins evolve under
many selective pressures, while antibodies are selected for binding to a particular antigen. As such,
models trained on all proteins may be poorly suited for capturing specific features of antibody
sequence evolution. In this work, we explore the use of an antibody-specific language model for
understanding affinity maturation within immune repertoires.
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2 Methods

2.1 Antibody encoder model

To learn antibody-specific representations, we trained a transformer encoder model [2] on 558M
non-redundant sequences from the Observed Antibody Space [11] (Appendix A.1). The model, which
we call AntiBERTy, is based on the BERT architecture [2] implementation from Huggingface [19].
We trained using the masked language modeling (MLM) objective, as originally proposed by Devlin
et al. [2]. Specific model parameters and training loss plots are provided provided in Appendix A.2.

2.2 Evolutionary analysis of immune repertoires

Inspired by recent work in modeling protein evolution with language models [6], we began by looking
for global trends within individual repertoires. We considered immune repertoire samples from four
donors who developed neutralizing antibodies against HIV-1 [22, 21] (Appendix A.3). Specifically,
these donors developed antibodies belonging to the VRC01 class, which bind to the HIV-1 spike
glycoprotein120 (gp120) through a VH -gene mediated paratope [20, 21]. For each repertoire, we
created a k-nearest-neighbor graph using embeddings from AntiBERTy as described by Hie et al [6].
We additionally plotted evo-velocity scores (Appendix A.4).

2.3 Multiple instance learning on sequence embeddings
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Figure 1: Diagram of MIL model for
predicting whether a bag of sequences
contains a highly redundant instance.

For a given sequence in a repertoire, we sought to iden-
tify the residues contributing to antigen binding (i.e., the
paratope). However, our objective is complicated by the
absence of labels describing the binding capabilities of
individual antibody sequences within the repertoire. In-
stead, we rely on the connection between clonal expansion
and antigen binding [15] to construct a noisy label – i.e.,
we assume that the most frequently observed antibodies
are binders. We then adopt a multiple instance learning
(MIL) framework [3] to predict whether a set of sequences
is likely to contain a highly redundant instance (and thus,
binding residues).

2.3.1 MIL dataset creation

For each repertoire, we compute the 85th percentile of
redundancy values and consider sequences with greater
redundancy to be likely binders and those with lower re-
dundancy to be unlikely binders. Then, to generate training
examples, we sample bags of 64 sequences (uniformly at
random) from the more- or less-redundant partitions to
create positive or negative examples, respectively.

2.3.2 Model architecture and training

We construct a MIL model consisting of two primary com-
ponents (Fig. 1): an instance embedding module and an
MIL pooling classifier. The inputs to the instance em-
bedding module are generated by passing an amino acid
sequence S = (s1, . . . , sL) through AntiBERTy. We ex-

tract the final hidden representation from AntiBERTy and reduce the dimensionality using a linear
transformation, resulting in a variable-length embedding H = (h1, . . . ,hL) with hi 2 Rdemb . Then,
we use a multi-head attention [18] pooling layer to reduce the variable-length embedding to a fixed
size vector, described below for one attention head:
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in order to obtain the final fixed-size instance embedding x =
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Q,K,V 2 Rdemb⇥dhead and wemb 2 Rdhead⇥1 are learnable parameters, and aemb 2 RL is a per-
residue attention score. In practice, we use four attention heads and concatenate the fixed-size
embeddings. Each sequence in a bag is passed individually through the instance embedding module
and the embeddings are collected to form the set X = {x1, . . . ,xB}. We adopt the gated attention
mechanism from Ilse et al [7] to learn a MIL pooling operation:
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where V,U 2 Rdattn and wbag 2 Rdattn⇥1 are learnable parameters, abag 2 RB is a per-instance
attention score, and z 2 Rdemb is a fixed-size bag embedding. Finally, the bag classification is
predicted with a two-layer feed-forward network followed by the logistic function.

Specific model parameters are provided in Appendix A.5. We use cross-entropy loss to train the
model for 20 epochs, where an epoch is defined as the total repertoire size divided by the bag size.
During training, we sample positive and negative bags with equal frequency.

3 Results

3.1 Language model reveals trajectories within repertoire

We applied the evolutionary analysis to repertoires samples from four donors who produced VRC01
class antibodies. First, we visualized the KNN graph in two-dimensional UMAP [12] embedding
and annotated each sequence with the distance from germline (Fig. 2A). For each donor, we observe
continuous trajectories between germline sequences and highly mutated derivatives, consistent with
the process of affinity maturation. Next, we combined the repertoires from all donors into a single
set and repeated the analysis (Fig. 2B). The combined sequence graph displays significant overlap
between the antibody sequences from donors RU3, IAVI57, and IAVI74, consistent with previous
findings that VRC01 antibodies share ontogenies [22]. In constrast, the repertoire from donor
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B C
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Figure 2: Evolutionary analysis of immune repertoires. (A) UMAP embedding of repertoire sequences
annotated with Levenshtein distance (LD) from germline for four donors. (B) UMAP embedding of
four-donor combined repertoire. (C) Combined repertoire annotated with sequence redundancy.
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C38 overlaps little with other donors, likely due to maturation from an alternative set of germline
sequences. Finally, we show the redundancy of each sequence within the combined repertoire
(Fig. 2C). We observe a relatively uniform distribution of redundancy throughout the embedded space.
This uniformity is likely a reflection of iterative nature of affinity maturation, by which sequences are
developed through many rounds of clonal expansion and diversification.

4I3S 4J6R 4JPV 4JPW 4LSP

4LSS 4LSU 4LSV 4YDI 4YDL

Figure 3: MIL model attention reveals paratope. Ten VRC01 antibodies annotated with residue-level
attention from MIL model in complex with gp120 antigen (green). Attention values increase from
blue to red. For seven antibodies (indicated with red boxes), attention localizes to paratope residues.

3.2 MIL model identifies VRC01 paratope

MIL models were trained for each individual repertoire, as well as the combined repertoire, as
described above. For each dataset, the model learned to effectively identify bags containing high-
redundancy sequences (Appendix A.6). To verify that the model had learned properties of VRC01
antibodies, we collected a set of ten VRC01 antibodies crystallized in complex with the gp120
antigen [8, 10, 21, 22]. We created single-instance bags for each sequence and confirmed that the
MIL model successfully produced positive predictions. Next, we investigated whether the residues
contributing to predictions were consistent with the binding mode of VRC01 antibodies. For each
complex, we annotated the antibody structure with the attention aemb from each of four heads of
the instance embedding module (Fig. 3). For seven of the ten sequences, the second attention head
showed remarkable localization to the H2 loop and the following beta strand, consistent with the
VRC01 paratope (Fig. 2). The remaining attention heads scattered attention throughout the structure
(Appendix A.7), consistent with previous observations that substantial framework mutations are
necessary for functional VRC01 antibodies [10].

4 Conclusion

In this work, we explored the use of language models to study the affinity maturation process. Towards
this goal, we developed AntiBERTy, an antibody-specific language model trained on a massive set
of natural antibody sequences. Next, we showed that immune repertoire sequences encoded with
AntiBERTy cluster to resemble affinity maturation trajectories. Closer inspection of these trajectories
may provide new biological insights into the affinity maturation process. Finally, we trained a MIL
model to detect highly redundant sequences, and showed that the model’s attention localized to
binding residues for an extensively studied class of antibodies. In the future, similar methods may
enable identification of paratope residues from immune repertoire sequences alone.
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A Appendix

A.1 Antibody sequence dataset

The Observed Antibody Space is a database containing over 1B antibody variable domain sequneces
from 80 immune repertoire sequencing studies. We clustered this set at 95% sequence identity with
LinClust [17] to extract a non-redundant set of 588M sequences. Our dataset includes heavy and light
chains from six species (human, mouse, rat, camel, rabbit, and rhesus). From the 588M sequences
extracted from the OAS database, we hold out 5% for future testing. Of the remaining 95%, we train
the model 558M sequences and use 1M for evaluation and hyperparameter tuning.

A.2 AntiBERTy model

AntiBERTy is based on the BERT transformer encoder model [2] implementation from Huggingface
[19]. We set the hidden dimension to 512 and the feedforward dimension to 2048. Our model contains
8 layers, with 8 attention heads per layer. In total, AntiBERTy contains approximately 26M trainable
parameters. We train the model for 8 epochs over the full dataset, which takes approximately 10
days when parallelized across four NVIDIA A100 GPUs. Training and evaluation loss are shown in
Figure 4.

Figure 4: Masked language modeling training and eval loss.

A.3 HIV-1 donor repertoires

For this work, we collected four previously published immune repertoire sequence datasets from
donors who developed neutralizing antibodies against the HIV-1 envelope glycoprotein120. We refer
to the four donors using the original identifiers from their respective studies: RU3 [22], IAVI57 [22],
IAVI74 [22], and C38 [21]. For each donor, unsorted B-cells were collected from peripheral blood
mononuclear cells (PMBC). All sequences are of the IGHG isotype. The number of sequences in
each repertoire are given below.
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Donor Number of sequences
RU3 77,067
IAVI57 67,339
IAVI74 40,517
C38 47,670

Table 1: Size of immune repertoire samples for each donor.

A.4 Evo-velocity analysis

For each repertoire, we computed evo-velocity scores as described by Hie et al. [6]. For each edge in
the KNN graph between two sequences xa and x

b, we calculate an evo-velcoity score:
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} is the set or residues that differ between x

a and x
b, and zi is the latent

representation from AntiBERTy when the ith residue is masked. In Figure 5, we plot the evo-velocity
scores over the Levenshtein-distance-annotated UMAP embeddings for each repertoire. We observe
that the evo-velocity arrows consistently align towards the germline sequence rather than in the
direction of affinity maturation.

C38

LD from
germline

RU3

LD from
germline
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LD from
germline

Figure 5: Evo-velocity scores for each repertoire.

A.5 MIL model parameters

In Table 2, we report the parameters for the MIL models used in this work. In total, each MIL model
contains 31.3K trainable parameters. Models for individual repertoires are trained with batch size
32 and the combined model is trained with batch size 128. All models are trained using the Adam
optimizer [9]. The learning rate begins at 2e-5 and is decreased according to a cosine annealing
schedule.

Parameter Value
demb 32
nheads 4
dhead 16
dattn 32

Table 2: MIL model parameters
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A.6 MIL model performance metrics

Separate MIL models were trained on sequences from each donor repertoire, as well as a combined
dataset of all sequences. During training, 20% of sequences were held out for hyperparameter
evaluation. We report performance metrics on this set below.

Donor Accuracy AUROC Precision Recall F1 Score
RU3 0.71 0.79 0.83 0.62 0.71
IAVI57 0.90 0.95 0.93 0.89 0.91
IAVI74 0.90 0.96 0.95 0.88 0.91
C38 0.78 0.88 0.81 0.81 0.81
Combined 0.75 0.84 0.74 0.81 0.77

Table 3: Performance metrics for MIL models trained on different repertoire datasets.

A.7 Other MIL model attention heads

The MIL model trained for this work used four attention heads for embedding variable-length
sequences to fixed-sized vectors. Analysis of the second head is provided in the main text (Figure 3).
For the remaining heads, we observe attention scattered throughout the antibody (Figure 6). This
finding is consistent with observations from previous work that showed substantial framework
mutations are necessary to generate functional VRC01 antibodies [10].

10



4I3S 4J6R 4JPV 4JPW 4LSP

4LSS 4LSU 4LSV 4YDI 4YDL

4I3S 4J6R 4JPV 4JPW 4LSP

4LSS 4LSU 4LSV 4YDI 4YDL

4I3S 4J6R 4JPV 4JPW 4LSP

4LSS 4LSU 4LSV 4YDI 4YDL

H
ea
d
1

H
ea
d
3

H
ea
d
4

Figure 6: VRC01 antibody complexes annotated with attention from remaining heads. For each
structure, the antibody heavy chain is annotated with residue-level attention from MIL model
(increasing from blue to red). The light chain and gp120 antigen are shown in cyan and green,
respectively.
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