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Abstract

Focusing on the human kinome, we challenge a standard practice in proteochemo-
metric, sequence-based affinity prediction models: instead of leveraging the full
primary structure of proteins, each target is represented only by a sequence of
29 residues defining the ATP binding site. In kinase-ligand binding prediction,
our results show that the reduced active site sequence representation is not only
computationally more efficient but consistently yields significantly higher perfor-
mance than the full primary structure. This trend persists across different models
(a k-NN baseline and a multimodal deep neural network), datasets (BindingDB,
IDG-DREAM), performance metrics (RMSE, Pearson correlation) and holds true
when predicting affinity for both unseen ligands and kinases. For example, the
RMSE on pIC50 can be reduced by 5% and 9% respectively for unseen kinases
and kinase inhibitors. This trend is robust across kinases’ families and classes of in-
hibitors with a few exceptions where the necessity of full sequence is explained by
the drugs mechanism of action. Our interpretability analysis further demonstrates
that, even without supervision, the full sequence model can learn to focus on the
active site residues to a higher extent. Overall, this work challenges the assumption
that full primary structure is indispensable for virtual screening of human kinases.

1 Introduction

Protein kinases are ubiquitous for cell life and have become a vital source of targets for drug discovery
in the past 20 years [8, 9, 10]. Computational methods have supported our understanding of kinases
and their inhibitors in many regards, e.g., compound protein interaction (CPI) prediction [27, 26, 28,
34] and drug response prediction [17, 20]. While early approaches to kinase affinity prediction were
single-assay [27], or single-target models [26], proteochemometric approaches consider both chemical
and protein information and can generalize to novel ligands and targets simultaneously [7, 13]. To
avoid the need for costly protein structure information, most recent work relied only on primary
structure information, like amino acid (AA) sequences, coupled with SMILES [42] strings to represent
ligands [13, 18, 30, 15, 44, 6]. This model class has dominated the recent IDG-DREAM challenge [7].
Their winning model is highly similar to the BiMCA model [3] which is utilized herein.
Our contribution. In this work, we are first to systematically compare the impact of using active
site residues and full sequence information to represent kinases for 1D proteochemometric modeling
of drug-kinase binding affinity prediction (for overview see Figure 1). We perform all experiments
on both representations and investigate two models. First, a simple, yet efficient and novel KNN
regression model based on Levenshtein distance [21] of proteins and, secondly, a bimodal deep
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Figure 1: Comparison of two kinase representations. Primary structure representations of full sequence and
active sites for human kinases are evaluated on binding affinity prediction to ligands.

neural network, the BiMCA model [3], which follows the current state-of-the-art and dispenses with
traditional descriptors by relying solely on interpretable, textual inputs (SMILES and AA sequences).

2 Methods

Problem formulation. Let P denote the space of proteins, M the molecular space and A the affinity
scores. We are then interested in learning a function ΦA : P ×M → A. The function ΦA maps a
protein-ligand tuple to an affinity score and is learned from the training data set D = {pi,mi, ai}

N
i=1

where pi ∈ P ,mi ∈ M and ai ∈ A is the scalar binding strength, the pIC50.
K-Nearest Neighbor (KNN) regression. To address the presented problem, we first use a KNN
model based on a joint space spanned by protein and ligand similarity. Kinases are represented by pri-
mary structure (either full sequence or only active site) and molecules by their ECFP4 fingerprint [32].
As a distance metric between samples we utilize a combination of the length-normalized Levenshtein
distance for the primary structure and the Tanimoto similarity [36] of molecules, similar to the TITAN
model for protein-protein interaction prediction [41]. More formally, let {pj ,mj} denote an unseen
sample from the test dataset DTest = {pi,mi}

NTest

i=1 . With the goal of predicting âj to approximate
the unknown aj , we first retrieve the subset of training data Dk containing the k nearest neighbors

using the distance measure: D(pi,mi, pj ,mj) =
Lev(pi,pj)

max(|pi|,|pJ |)
+(1−T (mi,mj)) Here, | · | denotes

sequence length, T is the Tanimoto similarity measure and Lev(·, ·) is the Levenshtein distance [21].

Then, the prediction âj is trivially computed by âj =
∑k

i
ai

k
with ai ∈ Dk.

Bimodal multiscale convolutional attention (BiMCA) network. Alternatively, we utilize the
BiMCA model to learn a function ΦA : P ×M → A based on primary structure of proteins and
SMILES sequences of molecules. As visualized in Figure A1, this model separately ingests an
amino acid sequence and a SMILES sequence, converts the tokens into (learned) embedding vectors,
performs 1D convolutions to aggregate local substructures, applies a contextual attention mechanism
and then outputs a scalar pIC50 score. For details see appendix subsection A1.1.
Data. We extracted compound-protein interaction data from BindingDB [14] and curated a dataset
consisting of 206, 889 protein-ligand pairs and their associated pIC50 score. The samples were
distributed across 113, 475 ligands and 349 human kinases. The remaining data (i.e., all non-kinome
samples) contained 485, 461 samples (2856 proteins, 331, 169 ligands) and was used in one configu-
ration for pretraining the BiMCA model. For details on the data curation see subsection A1.2.
Human kinase sequence alignment. The binding site residues for each kinase were identified by
applying the binding site definition of protein kinase A [34] to a structurally-validated multiple
sequence alignment of 497 human protein kinase domains [29]. Sheridan’s definition identified
29 residues representing the ATP binding site including but not limited to contributions from the
Gly-rich-loop, gatekeeper, hinge, and DFG-in-out.

3 Results

Kinase data split. The kinase split (i.e., predicting affinity for unseen kinases) is the ideal setup to
test the impact of the protein representation. It is more challenging than splitting on ligands because
the shape of the binding pocket largely governs binding activity [40]. This task is highly relevant due
to the hidden ligand bias [35], i.e., the observation that binding affinity predictions are mostly based
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on ligand rather than interaction features [6]. The results of a 10-fold cross validation (CV) of all
three models show a consistent and strong superiority of the active site models (cf. Figure 2).

A B

Figure 2: Binding affinity prediction results on kinase split. Subfigure A) and B) respectively show the
RMSE and Pearson (PCC) on predicting pIC50 of the test samples (10-fold CV). On both metrics, the active site
configurations significantly outperform the full sequence configuration, irrespective of the utilized model. For
the exact numerical scores and validation data performance see Table A1 and Table A2.

For all three model configurations, the active site models significantly outperform the full sequence
models (p < 0.01, Wilcoxon signed-rank test, W+). This is remarkable because the full sequence
contains an order of magnitude more information (mean sequence length: 742 vs. 29 amino acids)
and the active site BiMCA models only have 5% of the parameters of the full sequence model. In
the BiMCA pretrained setting we exploited all non-kinase data from BindingDB to warm up the
BiMCA model before finetuning on the human kinome. Notably, all pretrained BiMCA models
outperform the regular ones, demonstrating that patterns of protein-ligand interactions benefit the
development of kinase-inhibitor affinity prediction models. When comparing the performance for the
eight different groups of conventional protein kinases (ePK, classification by [16], mapped with the
catalogue from [24]), the superiority of the active site configuration is consistent across the kinase
families with few exceptions (cf. Figure A4). Only for the TKL group in the KNN and the STE
and CMGC group in the BiMCA, the full sequence model achieves better performance than the
active site model. The TKL results do not resonate with the remaining findings on the KNN because
many TKL kinases (e.g., all RAF kinases [11]) have multiple binding sites which are not captured
in the active site sequence alone. To verify that the prediction performance does not hinge on the
availability of similar kinases in the training data, we investigated the per-kinase performance as a
function of the similarity to the nearest neighbor in the training data (cf. Figure A5). While all PCCs
are positive, none of them exceed values of 0.11 suggesting that our models do not require data from
similar kinases to work well. Last, in a comparison with previous work, we verified the generalization
abilities of our model toward four held-out protein families (Estrogen Receptors, Ion Channels, RTKs
and GPCRs). The results in Table A6 show that across all previous works, the BiMCA performed
best. These experiments were solely done with the full-sequence models due to the lack of active site
data for non-kinase proteins.

Ligand data split. This split (i.e., predicting affinity for unseen ligands) is the classical setting of
kinase inhibitor discovery. The results on the test dataset of the 10-fold CV show that, like in the
ligand split, all BiMCA active site models are superior to their full sequence analogs (8.2% and 4.7%
RMSE improvement for BiMCA and pretrained BiMCA, cf Table 1). Again, for both models, these
differences are statistically significant across the ten folds for both validation and test data as well as
RMSE and pearson correlation as metrics (p < 0.001, W+). However, Table 1 indicates that the KNN
model performed similarly well on both active sites and full sequences. This is because the protein
information is of negligible performance for our KNN model in a ligand split. When retrieving
the KNN, the first addend collapses to 0 for all samples of the same kinase, irrespective of whether
active site or full sequence information is used. This dilutes differences between the representations
and indeed, for 98.9% and 99.3% of the predicted samples, the nearest neighbor is a sample with
the same kinase. To remedy this confound, we evaluated the KNN performance exclusively on the
remaining samples. In alignment with the overall findings, the active site model is clearly superior
for these samples (RMSE 1.35 vs. 1.59, Pearson’s r 0.56 vs. 0.33 on the test data). In Figure 3
we investigate the performance of the model for different groups of kinase inhibitors; assessed by
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Table 1: Results on test dataset (ligand split).
Model Config RMSE PCC

KNN
Full seq. 0.76±0.00 0.83±0.01

Active site 0.77±0.00 0.83±0.01

BiMCA
Full seq. 0.91±0.01 0.74±0.00

Active site 0.83±0.01 0.79±0.00
BiMCA Full seq. 0.86±0.01 0.77±0.01
pretrain Active site 0.80±0.01 0.83±0.01

Figure 3: Performance of pretrained BiMCA in predict-
ing affinity for unseen kinase inhibitors according to
their primary protein target class.

the primary target for each kinase inhibitor, aggregated into thirteen groups of alleged mechanism
of action based on an established classification [33]. With the exception of MEK inhibitors, the
active site model performed better on all thirteen kinase inhibitor groups. Given that our sequence
alignment only relied on ATP binding site residues [29], we hypothesize that the increased MEK
(i.e., MAPK/ERK) inhibitor performance for full sequence models is due to the discovery of several
ATP-noncompetitive MEK inhibitors that bind to a unique site near the ATP binding pocket [43]. In
support of that, 94% of the 2909 MEK-inhibitor related samples making up this effect are indeed
accounted for by eight kinases of the MAPK family. In other words, for most MEK inhibitors the
binding pocket is not contained in the active site sequences. Equivalent to the kinase split, we verified
that model performance does not hinge upon the availability of similar molecules during training and
find only a very weak negative correlation between the per-ligand RMSE and the ECFP4-Tanimoto
similarity to the nearest neighbor in training data (cf. Figure A6).
Validation on external dataset. To verify our hypothesis on an independent dataset, we utilized the
IDG-DREAM challenge data [7]. The challenge focused on under-studied parts of the human kinome
to catalogue the unexplored target space of kinase inhibitors and thus resembles a challenging dataset
of 720 samples (for details on data processing see subsection A1.3). The results on this dataset are
in alignment with our overall findings (cf. Table A5). The active site residues outperforms the full
sequence information consistently in both models and the BiMCA yields better results than the KNN
model. Notably, the active site BiMCA is the only model that achieves a satisfying performance in
predicting activity in the under-studied and unseen kinases [7].
Model attention analysis. Given the surprising finding that providing more information on proteins
hampers performance, we sought to examine whether the full sequence models had learned to recover
tertiary structure information. For two exemplary kinases, MAPK11 and ABL1, we analyzed the
attention scores of the BiMCA model (cf. Figure A8). This is an ante-hoc interpretability method
that automatically assigns an attention (or relevance) score to each amino acid as well as SMILES
token during prediction. For both kinases, the mean attention scores on the active site residues
are significantly higher than on the remaining residues (α = 0.05%, MWU). In alignment with all
previous attention-based models in CPI prediction, the BiMCA model also does not convincingly
predict the active/interaction site when trained exclusively on binding affinity labels. On the positive
side, however, it does exhibit a mild ability to focus on the relevant residues. In contrast to these
subtle 3D effects in the full sequence model, the active site models convey the 3D information by
design more prominently – which might contribute to their improved generalizability compared to
full sequence models.

4 Discussion and conclusion
Here, we investigated proteochemometric modelling of CPI in light of different protein representations
and report a superiority of active site residues to full protein sequences when predicting binding
affinity for novel ligands as well as kinases. These findings are robust across two models (KNN
and BiMCA) and datasets (BindingDB and IDG-DREAM). This is an important finding because the
active site residues are a tiny subset of the full primary sequence which additionally codes for more
distant determinants of binding dynamics. It seems that providing exclusively the active site residues
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increases the signal-to-noise ratio in the sequences, consequently leading to better performance. Even
without supervision on the importance of the residues, the full sequence model learns to focus to a
significantly higher extent on the active site residues. While this might be interpreted as evidence
that the model recovers elements of tertiary structure from the sequence information alone, we notice
that this is a highly controversial and active topic in sequence-based CPI models [18, 12, 38, 22] and
protein language models in general [39]. Another important finding is that the active site models
even outperformed the full sequence models when both models were pretrained on full sequences,
suggesting that proteochemoetric models benefit from pretraining on large-scale pan-protein data
even if the final use case is limited to one family. Overall, our results suggest that "more is less" in
sequence-based kinase affinity prediction models.

Availability

To facilitate reproduction of the results and ease comparison to other methods, the source code as
well as the processed data (including the derived active sites) is publicly available from the following
GitHub repository: https://github.com/PaccMann/paccmann_kinase_binding_residues.

References

[1] Karim Abbasi, Parvin Razzaghi, Antti Poso, Massoud Amanlou, Jahan B Ghasemi, and Ali
Masoudi-Nejad. Deepcda: deep cross-domain compound–protein affinity prediction through
lstm and convolutional neural networks. Bioinformatics, 36(17):4633–4642, 2020.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

[3] Jannis Born, Matteo Manica, Joris Cadow, Greta Markert, Nil Adell Mill, Modestas Filipavicius,
Nikita Janakarajan, Antonio Cardinale, Teodoro Laino, and María Rodríguez Martínez. Data-
driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-
CoV-2. Machine Learning: Science and Technology, 2(2):025024, 2021.

[4] Jannis Born, Matteo Manica, Ali Oskooei, Joris Cadow, Greta Markert, and María Rodríguez
Martínez. PaccmannRL: De novo generation of hit-like anticancer molecules from transcrip-
tomic data via reinforcement learning. iScience, 24(4):102269, 2021.

[5] Joris Cadow, Jannis Born, Matteo Manica, Ali Oskooei, and María Rodríguez Martínez. Pac-
cmann: a web service for interpretable anticancer compound sensitivity prediction. Nucleic
acids research, 48(W1):W502–W508, 2020.

[6] Lifan Chen, Xiaoqin Tan, Dingyan Wang, Feisheng Zhong, Xiaohong Liu, Tianbiao Yang,
Xiaomin Luo, Kaixian Chen, Hualiang Jiang, and Mingyue Zheng. Transformercpi: improving
compound–protein interaction prediction by sequence-based deep learning with self-attention
mechanism and label reversal experiments. Bioinformatics, 36(16):4406–4414, 2020.
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A1 Appendices

A1.1 BiMCA model

As shown in Figure A1, the BiMCA is a bimodal neural network that consumes a SMILES sequence
of the ligand and the AA sequence of the kinase.
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Figure A1: The bimodal multiscale convolutional attention model (BiMCA). Both, kinases and ligands are
represented as text sequences of amino acids and SMILES respectively. The BiMCA uses learned embeddings
and then applies convolutions of multiple kernel sizes c on the embedding matrices (hence the words "multiscale
conolutional"). Afterwards, the context attention layers fuse information from both modalities and generate the
attention scores over one input modality, using the other modality as context. Black arrows show the information
flow through the network, white arrows the direction of the convolution sliding. Figure adjusted from [41].

The SMILES sequences of all ligands were padded to a length of 696 and the AA sequences
representing the kinase sequences were padded to a length of 2536 in the full sequence case and 32 in
the active site case. Both SMILES tokens and AA are represented by learned embedding vectors of
dimensionality 32 and 8. We then used four parallel 1D convolutional layers ("multiscale") with kernel
sizes of 3, 5, 11 for the ligands and 3, 11 and 25 on the proteins. Thereafter, a contextual attention
mechanism combines both input streams and helps the model to focus on relevant substructures
of proteins and ligands in light of the other modality. This mechanism is inspired by [2] and was
proposed in our previous work [23, 3]. The model automatically assigns attention scores αi ∈ [0, 1]
to each amino acid and each SMILES token. For brevity, these attention scores are computed as:

αi =
exp (ui)

∑T

j exp (uj)
, where ~u = tanh (X1W1 +W3(X2W2)) ~v (1)

We call X1 ∈ R
T1×C the reference input, where T1 ∈ {TM , TP } is the sequence length and C

is the number of convolutional filters. Further, X2 ∈ R
T2×C is the context input, where T2 ∈

{TM , TP }, T1 6= T2 is the sequence length in the other modality. W1 ∈ R
C×A, W2 ∈ R

C×A,
W3 ∈ R

T1×T2 and ~v ∈ R
A are learnable parameters.

Because the context attention layer required O(nm) parameters where n and m are the sequence
length of proteins and ligands respectively (for details see [3]), the full sequence model had substan-
tially more parameters than the active site model. To partly counteract this effect, the number of filter
kernels in the convolutional layers was 32 and 128 respectively for the full sequence model and the
active site model on both modalities. The output of the attention layers was fed to a stack of dense
layers with a single output node, interpreted as pIC50 affinity score for the provided protein-ligand
pair. In total, the active site model only consisted of 651,891 parameters, less than 5% of the full
sequence model (14,242,491). A dropout of 0.3 throughout convolutional and dense layers was
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used. Flavors of this model have been used successfully for cancer drug sensitivity prediction [23, 5]
and toxicity prediction [25]. All models were implemented in PyTorch [31] and used the pytoda
package [4] for data handling and preprocessing. The BiMCA model optimized a MSE loss with
Adam [19] and was trained for 50 epochs with a learning rate of 0.005, a batch size of 128 on a cluster
equipped with POWER8 processors and a single NVIDIA Tesla P100. The variant described here
is identical to the binding affinity descriptor used in [3] for predicting antiviral activity of potential
SARS-CoV-2 inhibitors.

A1.2 BindingDB data curation

We curated compound-protein interaction data from BindingDB [14]. From the 2,222,074 entries of
the database as on 22.04.2021, ∼800,000 were retained after removing missing values and duplicates.
Afterwards, samples with molecules whose SMILES strings were invalid or longer than 696 tokens,
i.e. atoms and/or bonds, were removed. We chose IC50 as binding affinity metric, converted all values
to pIC50 (i.e., the negative decimal logarithm of the half-maximal inhibitory concentration) and
clipped all values to the interval [2, 11] (1mM to 0.01nM). Last, we filtered out all samples where the
target proteins are not kinases. This resulted in 206, 889 samples distributed across 113, 475 ligands
(mean pIC50 per ligand: 7.1 ± 1.2) and 349 human kinases (mean pIC50 per kinase: 6.2 ± 0.9).
See Figure A2 for an overview of the dataset’s statistics.

For example, a notable and strong bias in the dataset is that kinases screened against more ligands
tend to have a higher average affinity (r = 0.39).

Non-kinase data. The remainder of the above data (i.e., all non-kinome samples) made up 485,461
samples distributed across 2856 proteins and 331,169 ligands. This data was used in one configuration
for pretraining the BiMCA model. After 20 epochs of pretraining, this model achieved a RMSE of
0.86 (r = 0.82) on the non-kinase data.

A B

C D

BindingDB kinase inhibitor data

Figure A2: Visualization of kinase inhibitor data in BindingDB [14]. A) Distribution of pIC50 scores in
database (N = 206, 989). B) Kinases with more affinity samples tend to be more promiscuous. C) Histogram
of number of data points for each kinase. D) Most ligands are screened on less than a dozen of kinases but some
are screend against almost all 349 kinases.

A1.3 IDG-DREAM data processing

From the initial 825 samples, 720 remained after restriction to kinases with full sequence and active
site information [29]. These samples were distributed across 276 kinases (32 unseen) and 93 ligands
(all unseen). This data split is much more stringent than the ligand split because for many samples
both ligands and kinases are unseen. Additional challenges posed by this dataset compared to
BindingDB are 1) experimental differences in the dose-response assays (multi-dose assays with
maximal concentration of 10µM that cause an incorrect lower limit for activity) and 2) the dose
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response metric, given in logarithmic dissociation constant (pKd) that differs from the pIC50 in
BindingDB. For the KNN model we used all data available in BindingBD as training data whereas
for the BiMCA we build an ensemble of the 10 models from the ligand split. Direct comparison
with the results reported in the IDG-DREAM challenge is not possible due to the aforementioned
differences to our training data.

A1.4 KNN

As KNN is a lazy learning method, the inference runtime scales with the dataset size (N = 206, 990
samples) and one query thus requires computing almost half a million distances. Therefore, in
practice we compute D not for all training samples but only for those samples {pi,mi} where either
1) pi = pj , 2) mi = mj or 3) pi is one of the 10 most similar sequences to pj in the training dataset.
The KNN model was evaluated on all odd k ≤ 25. For all results, we choose a value of k = 13 as
this led to the lowest RMSE on the validation dataset on the ligand split (see Figure A7).

A1.5 Data splitting strategies

For proteochemometric models there are four different splitting strategies (see Figure A3). Here, we
focus on two of these regimes, namely splitting affinity data based on ligands (while not controlling
for proteins) as well as the reverse task.
Ligand split. Generalizing to new molecules is the classical task in drug discovery. First, we put
aside the samples associated to 10% of the ligands. Then, we conducted a 10-fold cross-validation on
the remainder of the data. All splits were stratified by the number of samples as well as the mean
pIC50 per ligand.
Kinase split. With this setting, we wanted to assess the model’s ability to predict binding affinities
for unseen kinases. Like in the ligand split, we first put aside 10% of the kinases and then conducted
a 10-fold cross-validation on the remainder. Again, all splits were stratified by the number of samples
as well as the mean pIC50 per ligand.
Pretraining. The 485,461 non-kinase samples were split into train/test at a 90/10 ratio and this data
was then used in one configuration of the BiMCA model for pretraining.

. . .

Training sample Testing sample Discarded sample

.

.

.
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.

.

. . .

Data splitting for binding affinity prediction

Lenient ligand split Strict ligand split

Lenient 
kinase

split

Strict
kinase

split

Figure A3: Data splitting strategies. For bimodal tasks such as drug-target interaction prediction, four splitting
strategies are possible. In this work, a strict ligand split and a strict kinase split (colored in green) were explored.
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A1.6 Complementary results for kinase split

 Pearson correlation per kinase group
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Figure A4: Performance in predicting affinity for unseen kinases according to the kinase group. For the
KNN (left) and the pretrained BiMCA (right) the PCC of all samples of respective kinase group is shown.
Kinases that could not be classified with the catalogue from [24] are grouped into Other.

Per kinase performance 

Figure A5: Dependency of model performance on similarity to nearest neighbor in training data In none
of the four model configurations, a strong dependency/correlation between the performance on a specific kinase
and the distance to the nearest neighbor in training data was found. Measures obtained considering results on
validation data.
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Table A1: RMSE (on pIC50) on validation and test data (kinase split).
Data Config KNN BiMCA BiMCA (pretrained)

Val.
Full seq. 1.34±0.16 1.38±0.08 1.30±0.13

Active site 1.32±0.17 1.28±0.13 1.21±0.13

Test
Full seq. 1.56±0.09 1.44±0.04 1.32±0.04

Active site 1.52±0.10 1.33±0.04 1.25±0.05

Table A2: Pearson correlation coefficient on validation and test data (kinase split).
Data Config KNN BiMCA BiMCA (pretrained)

Val.
Full seq. 0.41±0.09 0.32±0.05 0.39±0.08

Active site 0.42±0.11 0.46±0.08 0.49±0.07

Test.
Full seq. 0.23±0.05 0.32±0.03 0.43±0.03

Active site 0.28±0.06 0.44±0.04 0.49±0.05

Per ligand performance 

Figure A6: Dependency of affinity prediction on similar ligands. For each ligand, the performance is shown
as a function to the Tanimoto similarity to the nearest training ligand. Measures computed on validation data.

Table A3: RMSE (on pIC50) on validation and test data (ligand split).
Data Config KNN BiMCA BiMCA (pretrained)

Val.
Full seq. 0.78±0.01 0.91±0.01 0.85±0.01

Active site 0.77±0.01 0.83±0.01 0.82±0.01

Test
Full seq. 0.76±0.00 0.91±0.01 0.86±0.01

Active site 0.77±0.00 0.83±0.01 0.82±0.01
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Table A4: Pearson correlation coefficient on validation and test data (ligand split).
Data Config KNN BiMCA BiMCA (pretrained)

Val.
Full seq. 0.83±0.01 0.75±0.00 0.78±0.01

Active site 0.83±0.01 0.79±0.00 0.80±0.01

Test.
Full seq. 0.83±0.01 0.74±0.00 0.77±0.01

Active site 0.83±0.01 0.79±0.00 0.80±0.01

Table A5: Evaluation on IDG-DREAM dataset [7]. PCC values are reported.
Model Config All Known kin. Unknown kin. Round 1 Round 2

KNN
Full seq. 0.224 0.242 0.032 0.132 0.32

Active site 0.244 0.282 -0.141 0.145 0.344

BiMCA
Full seq. 0.16 0.169 0.064 0.102 0.185

Active site 0.32 0.327 0.238 0.179 0.412
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Figure A7: Kinase split validation performance for different k. Based on this plot, we fixed k to the lowest
RMSE on this dataset (k = 13) and used the same k for all results throughout the paper.

A1.7 Complementary results for ligand split
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Figure A8: Kinase attention scores. Left: For each kinase-ligand pair of MAPK11 and ABL1, the mean
attention scores on active site residues versus the remaining residues is shown. Right: Exemplary visualization
of attention values overlayed on the MAPK11 structure highlighting atoms with high weight (blue means low,
green medium and red high attention). Residues depicted as spheres belong to the active site.
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Table A6: Generalization to new protein families based on fixed-split BindingDB dataset from DeepAffinity [18].
RMSE and Pearson correlation (PCC) for each model and protein family. Best performances are shown in bold.
DeepAffinity models refer to unified RNN-CNN and RNN/GCNN-CNN models. All models below the single
line are ours. The three last models above that line are ensembles which can hardly be directly compared to
our models. Numbers from other works taken from their manuscripts since the split is fixed. DeepCDA did not
report RMSE. The last columns report the average across the four tasks.

Model
ER Ion Channel RTK GPCR All

RMSE PCC RMSE PCC RMSE PCC RMSE PCC RMSE PCC

DeepAffinity SMILES [18] 1.53 0.16 1.34 0.17 1.24 0.39 1.40 0.24 1.38 0.24
DeepAffinity Graph [18] 1.68 0.05 1.43 0.10 1.74 0.01 1.63 0.04 1.62 0.05

DeepCDA [1] - 0.10 - 0.31 - 0.42 - 0.28 - 0.28
Truong [37] (ECFP/Pfam) 1.74 0.19 1.32 0.27 1.27 0.43 1.49 0.22 1.46 0.28

DeepAffinity Ensemble [18] 1.46 0.30 1.30 0.18 1.23 0.42 1.36 0.30 1.34 0.30
MLP ensemble [37] 1.51 0.24 1.36 0.19 1.26 0.42 1.36 0.33 1.37 0.29

Transformer ensemble [37] 1.61 0.39 1.34 0.38 1.14 0.47 1.29 0.33 1.35 0.39

NN (k=1) 1.53 0.30 1.80 0.07 1.51 0.32 1.81 0.17 1.66 0.22
KNN (k=4) 1.36 0.30 1.52 0.11 1.31 0.37 1.50 0.20 1.42 0.25

KNN (k=13) 1.28 0.40 1.43 0.13 1.26 0.36 1.43 0.17 1.35 0.27
KNN (k=25) 1.27 0.43 1.41 0.13 1.25 0.34 1.42 0.15 1.33 0.26

BiMCA (full seq.) 1.35 0.32 1.19 0.41 1.38 0.40 1.25 0.42 1.27 0.39
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