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Abstract

Motivated by the 2D class averaging problem in single-particle cryo-electron
microscopy, we present a k-means algorithm based on a rotationally-invariant
Wasserstein metric for images. Unlike existing methods that are based on Euclidean
(L2) distances, we prove that the Wasserstein metric better accommodates for the
out-of-plane angular differences between different particle views. We demonstrate
on a synthetic dataset that our method gives superior results compared to an L2

baseline. Furthermore, there is little computational overhead, thanks to the use of
a fast linear-time approximation to the Wasserstein-1 metric, also known as the
Earthmover’s distance.

1 Introduction

Single particle cryo-electron microscopy (cryo-EM) is a powerful method for reconstructing the 3D
structure of individual proteins and other macromolecules (Frank, 2006; Cheng, 2018). In a cryo-EM
experiment, a sample of the molecule of interest is rapidly frozen, forming a thin sheet of vitreous ice,
and then imaged using a transmission electron microscope. This results in a set of images that contain
noisy tomographic projections of the electrostatic potential of the molecule at random orientations.
The images then undergo a series of processing steps, including:

• Motion correction.
• Estimation of the contrast transfer function (CTF) or point-spread function.
• Particle picking, where the position of the molecules in the ice sheet is identified.
• 2D class averaging, where similar particle images are clustered together and averaged.
• Filtering of bad images (typically, entire clusters from the previous step).
• Reconstruction of a 3D molecular model (or models).

All of these steps are done using special-purpose software, for example: Tang et al. (2007); Scheres
(2012); Lyumkis et al. (2013); de la Rosa-Trevín et al. (2013); Rohou and Grigorieff (2015); Punjani
et al. (2017); Heimowitz et al. (2018); Grant et al. (2018).

Cryo-EM has been gaining popularity and its importance has been recognized in the 2017 Nobel
prize in Chemistry (Cressey and Callaway, 2017). An examination of the Protein Data Bank (Berman,
2000) shows that in 2020, 16% of entries had structures that were determined by cryo-EM, compared
to 12% in 2019, and 7% in 2018. For more on cryo-EM and its current challenges, see the reviews of
Vinothkumar and Henderson (2016); Lyumkis (2019); Singer and Sigworth (2020).

1.1 Image formation in cryo-EM

Given a 3D molecule with an electrostatic potential function ρ : R3 → R (henceforth “particle”), the
images captured by the electron microscope are modeled as noisy tomographic projections along
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different orientations. A tomographic projection of the particle onto the x-y plane is defined as
(T ρ) (x, y) =

∫
R ρ(x, y, z)dz. More general tomographic projections are given by a rotation R of

the potential function ρ followed by projection onto the x-y plane,

TRρ =

∫
R

(Rρ) (x, y, z)dz (1)

where R ∈ SO(3), and we define (Rρ)(x, y, z) = ρ(RT (x, y, z)). Particle images in cryo-EM are
typically modeled as follows,

Image = h ∗ TRρ+ ε, (2)

where h is a point spread function that is convolved with the projection and ε is Gaussian noise. See
Figure 1 for an example of a tomographic projection. We define the viewing angle of our particle as a
unit vector v that represents orientation of our particle R ∈ SO(3) modulo in-plane rotations (which
can be represented as members of SO(2)).

1.2 Clustering tomographic projections

The imaging process in cryo-EM involves high-levels of noise. To improve the signal-to-noise ratio
(SNR), it is common to cluster the noisy projection images with ones that are similar up to an in-plane
rotations. This clustering task is called “2D classification and averaging” in the cryo-EM literature
and the clusters are called classes. The results of this stage have multiple uses, including:

• Template selection from 2D class averages for particle picking (Frank and Wagenknecht,
1983; Chen and Grigorieff, 2007; Scheres, 2015).

• Particle sorting (Zhou et al., 2020), discarding images that belong to bad clusters.

• Visual assessment and symmetry detection.

• Ab-initio modeling, where an initial 3D model (or set of models) is constructed to be refined
in later stages (Greenberg and Shkolnisky, 2017; Punjani et al., 2017).

Existing methods for 2D clustering include the reference-free alignment algorithm that tries to find a
global alignment of all images (Penczek et al., 1992), clustering based on invariant functions and
multivariate statistical analysis (Schatz and Van Heel, 1990), rotationally invariant k-means (Penczek
et al., 1996) and the Expectation-Maximization (EM) based approach of Scheres et al. (2005). All of
these methods use the L2 distance metric on rotated images.

Let us consider a simple centroid+noise model, where each image in a cluster is generated by adding
Gaussian noise to a particular clean view µ that is the (oracle) centroid,

Imagei ∼ N (µ, σ2I). (3)

In that case the L2 metric is (up to constants) nothing but the log-likelihood of the image patch,
conditioned on µ,

logL(Imagei|µ) = −‖Imagei − µ‖2/2σ2 + Cσ. (4)

Under the centroid+noise model, the commonly-used L2 distance metric seems perfectly suitable.
However, real particle images have many other sources of variability, including angular differences,
in-plane shifts and various forms of molecular heterogeneity. For these sources of variability, the L2

distance metric is ill-suited. See Section 4 for more on this.

In this work we propose to use the Wasserstein-1 metricW1, also known as the Earthmover’s distance,
as an alternative to the L2 distance for comparing particle images. In Section 2 we describe a variant
of the rotationally invariant k-means that is based on a fast linear-time approximation of W1 and in
Section 3.2 we demonstrate superior performance on a synthetic dataset of Ribosome projections. In
Section 4 we analyze the behavior of the W1 and L2 metrics theoretically with respect to angular
differences of tomographic projections. In particular we show that the rotationally-invariant W1

metric has the nice property that it is bounded from above by the angular difference of the projections.
On the other hand, the L2 metric shows no such relation.
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2 Methods

In cryo-EM, in-plane rotations of the molecular projections are assumed to be uniformly distributed,
hence is is desirable for the distance metric to be invariant to in-plane rotations. A natural candidate
is the rotationally-invariant Euclidean distance,

LR2 (I1, I2) := min
R∈SO(2)

||I1 −RI2||2. (5)

A drawback of this metric is that visually similar projection images that have a small viewing angle
difference can have an arbitrarily large L2 distance. See discussion in Section 4.

To address this, we define a metric based on the Wasserstein-p Metric between two probability
distributions (Villani, 2003). This metric measures the “work” it takes to transport the mass of one
probability distribution to the other, where work is defined as the amount of mass times the distance
(on the underlying metric space) between the origin and destination of the mass. More formally, the
Wasserstein-p distance between two normalized greyscale N ×N images is defined as

Wp(I1, I2) = inf
π∈Π(I1,I2)

∑
u∈[N ]2

∑
v∈[N ]2

||u− v||pπ(u, v), (6)

where Π(I1, I2) is the set of joint distributions on [N ]2 with marginals I1, I2 respectively.

In cryo-EM, the Wasserstein-1 metric has been used to understand the conformation space of 3D
volumes of molecules (Zelesko et al., 2020). For clustering tomographic projections, we construct a
rotationally-invariant Wp distance to be our clustering metric analogously to Eq. (5)

WR
p (I1, I2) := min

R∈SO(2)
Wp(I1, RI2). (7)

2.1 Clustering with rotationally-invariant metrics

Algorithm 1 describes a generic rotationally-invariant k-means algorithm based on an arbitrary image
patch distance metric d. The choice d = L2 gives the rotationally-invariant k-means of Penczek
et al. (1996). By supplying d = W1 we get a new rotationally-invariant k-means algorithm based
on the W1 distance. We choose p = 1 for the Wp distance as it admits a fast linear-time wavelet
approximation as we will see in the next section. For both choices of the metric, we initialize the
centroids using a rotationally-invariant k-means++ initialization which we describe in Algorithm 2.
When we denote r ∈ rot we mean that r performs an in-plane rotation of an image. We approximate
the space of all in-plane rotation angles by a discrete set of angles.

Algorithm 1: Rotationally invariant k-means
Parameters: k, n, d
Output Cluster Averages: {Cj}j∈[k]

Input Images: {Ii}i∈[n]

{Cj}j∈[k] := InitializeCenters({Ii}i∈[n])

while loss decreases do
loss = 0
for i ∈ [n] do

(ji, ri) := argmin(j,r):j∈[k],r∈rot d(Ii, r(Cj))

loss = loss + d(Ii, ri(Cji))
2

end
for j ∈ [k] do

Cj := mean({r−1
i (Ii) : ji = j})

end
end

return {Cj}j∈[k]
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Algorithm 2: Rotationally invariant k-means++ initialization
Parameters: k, n, d
Output Cluster Averages: {Cj}j∈[k]

Input Images: {Ii}i∈[n]

C1 = RandomSelect({Ii}i∈[n])
for j ∈ {2, ..., k} do

for i ∈ [n] do
pi :=

(
minm∈[j−1],r∈rot d(Ii, r(Cm))

)2
end
j = DrawFrom(p) // Draw index j with probability proportional to pj
Cj = Ij

end

return {Cj}j∈[k]

2.2 Computing the Earthmover’s distance

Computing the distance W1(I1, I2) (also known as the Earthmover’s distance) between two N ×N
pixels can be formulated as a linear program in O(N2) variables and O(N) constraints. Given n
images, k centers, and m rotations for each image and t iterations of k-means, we have to compute
O(n×m× k × t) distances. Computing the W1 distance between two 100× 100 size images using
a standard LP solver takes on average of 5 seconds to compute using the Python Optimal Transport
Library of Flamary and Courty (2017) on a single core of a 7th generation 2.8 GHz Intel Core i7
processor. Computing the exact W1 distance over all the rotations of all the images over all the
iterations is prohibitively slow.

Fortunately, the W1 distance admits a fast linear-time approximation based on the two-dimensional
fast wavelet transform. LetWIi(λ) be the 2D wavelet transform of Ii, where λ = (k, s, (nx, ny)) is
an index to the wavelet coefficients (Mallat, 2009, Ch. 7.7.2)). In this notation k ∈ {1, 2, 3} selects
between one of three mother wavelets, the scale (or dilation) parameter is s and the two-dimensional
translation of the wavelet is specified by (nx, ny). We can approximate the W1 distance between two
images I1, I2 using a weighted `1 distance between their wavelet coefficients, with an exponential
weight given by the scale parameter (Shirdhonkar and Jacobs, 2008),

W̃1(I1, I2) :=
∑
λ

2−2λs |(WI1)(λ)− (WI2)(λ)|. (8)

This metric is strongly equivalent to W1. i.e. there exist 0 < c < C such that for all I1, I2 ∈ RN2

,

c · W̃1(I1, I2) ≤W1(I1, I2) ≤ C · W̃1(I1, I2). (9)
Different choices of the wavelet basis give different ratios C/c. We chose the symmetric Daubechies
wavelets of order 5 due to the quality of their approximation (Shirdhonkar and Jacobs, 2008). The
sum in Eq. (8) was computed with level up to 6 using the PyWavelets package (Lee et al., 2019).

3 Experimental results

3.1 Dataset generation

We built a synthetic dataset of 10,000 tomographic projections of the Plasmodium falciparum 80S
ribosome bound to the anti-protozoan drug emetine, EMD-2660 (Wong et al., 2014), shown in
Figure 1. To generate each image, we randomly rotated the ribosome around its center of mass using
a uniform draw of SO(3), projected it to 2D by summing over the z axis and resized the resulting
image to 128× 128. Finally we added i.i.d. N (0, σ2) noise to the image at different signal-to-noise
(SNR) levels. Given a dataset of images S ∈ RN×N×n, the SNR is defined as

SNR :=
‖D‖2

nN2σ2
. (10)

We produce three datasets to run experiments on by adding noise at SNR values {1/8, 1/12, 1/16}.
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Figure 1: (left) Surface plot of the 3D electrostatic potential of the 80S ribosome; (middle) Example
tomographic projection; (right) The same projection with Gaussian noise at SNR=1/16.

0° 30° 60° 90° 120° 150° 180° 0° 30° 60° 90° 120° 150° 180° 0° 30° 60° 90° 120° 150° 180°

W1 Based Algorithm
L2 Based Algorithm

Figure 2: Distribution of within-cluster pairwise angular differences (narrower is better) at SNR
values 1/8, 1/12, 1/16 from left to right.

3.2 Simulation results

We performed 2D clustering on our three datasets using rotationally-invariant k-means++ (Algorithms
1, 2) with the W̃1 and L2 distance using k = 150 clusters. All in-plane rotations at increments of
π/100 radians were tested in the Algorithm 1. To quantify the difference in performance, we
computed the distribution of within-cluster viewing angle differences for all pairs of images assigned
to the same cluster which we visualize in Figure 2. For a molecule like the Ribosome that has no
symmetries, we expect these angular differences to be concentrated around zero, since large angular
differences typically give large differences in the projection images. For all SNR levels, we see that
W̃1 gives better angular coherence than L2. Some of the distributions have a small peak near 180◦

which corresponds to images where our algorithms is confusing antipodal viewing angles.

In Figure 3 we show the cluster means of the 8 largest clusters at SNR 1/16. Visually, we can see
that the algorithm based on W̃1 produces sharper mean images. Finally, we examine the occupancy
of the clusters. The W̃1 algorithm provides more evenly sized clusters, whereas for the L2 algorithm
we see a few very populated centers and a large drop-off in occupancy in the other clusters. When
clustering images with Gaussian noise, the averages of larger clusters will tend to be less noisy,
since the noise variance is inversely proportional to the cluster size. Due to the lower noise levels,
more of the images will be assigned to the larger clusters, making them even larger. This “rich get
richer” phenomenon has been observed in cryo-EM (Sorzano et al., 2010). It can explain the large
differences in occupancy visible in the top panels of Figure 4, despite the fact that the angles were
drawn uniformly. The Wasserstein distance is more resilient to i.i.d. noise and this may explain the
uniformity in the resulting cluster sizes seen in Figure 4.

Finally, clustering with the W̃1 distance does not increase the runtime of the clustering algorithm by
much. We include timing results per iteration of K-means with each metric, along with the number of
iterations it took for the algorithm to converge in Table 1.
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Figure 3: Means of the largest 8 clusters for the SNR=1/16 dataset, sorted by cluster size from left to
right. (top) L2 distance; (bottom) W1 metric. We can see that the W1 metric preserves more details
than the L2 distance. The portion of the image that does not contain our particle appears less noisy in
the L2 averages, however this is just an artifact of the cluster size. By averaging a large number of
images, the noise decreases but the signal also deteriorates.
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Figure 4: Cluster sizes for the datasets with signal-to-noise 1/8, 1/12, 1/16 from left to right.

3.3 Sensitivity to noise

To examine the effect of noise on the W̃R
1 and LR2 distances, we plot the W̃R

1 and LR2 distances
against the viewing angle difference between projections of the ribosome. In Figure 5 we can see that
W̃R

1 continues to give meaningful distances under noise compared to the LR2 distance.

4 Theory

For a given particle, two tomographic projections from similar viewing angles typically produce
images that are similar. Hence, it is desirable that a metric for comparing tomographic projections
will assign a small distance to projections that have a small difference in viewing angle. We show
that the rotationally-invariant Wasserstein metric satisfies this property.
Proposition 1. Let ρ : R3 → R≥0 be a probability distribution supported on the 3D unit ball and
let I1 and I2 be its tomographic projections along the vectors u and v respectively. Denote by
](u,v) ∈ [0, π] the angle between the vectors, then

WR
p (I1, I2) ≤ [2 sin(](u,v)/2)]p ≤ ](u,v)p (11)

where WR
p is the rotationally-invariant Wasserstein metric defined in Eq. (7).

Table 1: Seconds per iteration averaged (over two runs) for the L2 and W̃1 metrics and the number
of iterations before convergence at different SNRs (for one run). The programs were run using 32
Intel core i7 CPU cores which allow us to compute the distances from images in our dataset to all the
cluster averages in a parallelized fashion across the averages.

Metric k-means (sec/iteration) niter (SNR = 1/8) niter (SNR = 1/12) niter (SNR = 1/16)
L2 1204 s 13 31 22
W1 1676 s 23 27 26
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Figure 5: W̃R
1 and LR2 distances versus the viewing angle difference between a fixed random clean

projection and 500 random noisy projections (orange) and 500 clean images (blue). SNR = 1/16

See Appendix A for the proof. A similar upper-bound for the rotationally-invariant L2 distance
cannot hold for all densities ρ. To see why, consider an off-center point mass. Any two projections
at slightly different viewing angles will have a large LR2 distance no matter how small their angular
difference is. However, for densities with bounded gradients it is possible to produce upper bounds.

Proposition 2. Let B = supx |∇ρ(x)| be an upper bound on the absolute gradient of the density.
Under the same conditions of Proposition 1 we have LR2 (I1, I2) ≤ 2

√
πB](u,v).

The proof is in Appendix A. This bound suggests that LR2 is a reasonable metric to use for smooth
signals. For non-smooth signals, or signals with very large B, this means that there is no guarantee
that the LR2 distance will assign a small distance between projections with a small viewing angle.

5 Discussion

From our numerical experiments, we see that the rotationally-invariant Wasserstein-1 k-means
clustering algorithm produces clusters that have more angular coherence and sharper cluster means
than the rotationally-invariant L2 clustering algorithm. Furthermore, at low SNRs we see that the
Wasserstein-1 distance continues to give meaningful differences between projections. Thus, we
believe it is a promising alternative to commonly used rotationally-invariant clustering algorithms
based on the L2 distance. In future work we would like to investigate what component of the success
of our method comes from having a metric that is robust to noise, and what component comes from
better reflecting angular differences.

Recently, there has been an explosion of interest in the analysis of molecular samples with continuous
variability (Nakane et al., 2018; Sorzano et al., 2019; Moscovich et al., 2020; Lederman et al., 2020;
Zhong et al., 2020; Dashti et al., 2020). In the presence of continuous variability, it is much more
challenging to employ 2D class averaging and related techniques. This is due to the fact that the
clusters need to account not only for the entire range of viewing directions but also for all the possible
3D conformations of the molecule of interest. In future work we would like to test the performance
of Wasserstein-based k-means clustering for datasets with continuous variability. Wasserstein metrics
seem like a natural fit since, by definition, motion of a part of the molecule incurs a distance no
greater than the mass of the moving part multiplied by its displacement.

There are many other directions for future work, including incorporating Wasserstein metrics into
EM-ML style algorithms (Scheres, 2015), Wasserstein barycenters for estimating the cluster centers
(Cuturi and Doucet, 2014), rotationally-invariant denoising procedures (Zhao and Singer, 2014),
incorporating translations, experiments on more realistic datasets with a contrast transfer function
and analysis of real datasets.

6 Broader impact

Our work demonstrates that the use of Wasserstein metrics can improve the quality of clustering
tomographic projections in the context of cryo-electron microscopy. This can reduce the number of
images required to produce high quality cluster averages. Improved data efficiency in the cryo-EM
pipeline will accelerate discovery in structural biology (with broad implications to medicine) and
lower the barriers of entry to cryo-EM for resource-constrained labs around the world.

7



A Appendix: proofs

A.1 Proof of Proposition 1

Consider a probability measure µ on some space X and let T : X → Y be a measurable mapping.
it naturally induces a measure on its image known as the push-forward measure or image measure
T#µ, defined by

(T#µ)(S) = µ(T−1(S)). (12)

Lemma 1. Given two probability distributions on the unit ball B ⊂ R3 µ, η,

W1(P#µ, P#η) ≤W1(µ, η), (13)

where P#µ is the tomographic projection in terms of a pushforward measure of µ defined on B onto
D ⊂ R2, and the Earthmover’s distance for each is defined for the underlying probability space.

Proof. Let Γ be any transportation measure on B ×B such that Γ(A,B) = µ(A),Γ(B,A) = ν(A).
Let T map Lesbegue measurable subsets of B ×B to measurable subsets of D× D such that each
element ((x1, y1, z1), (x2, y2, z2)) in a measurable set ofB×B is mapped to ((x1, y2), (x2, y2)). Let
J = T#Γ where # denotes the push-forward operator. J(A,D) = P#µ(A), J(D, A) = P#ν(A).
By the change of variables formula for push-forward measures:∫

D×D
||(x1, y1)− (x2, y2)||dJ((x1, y1), (x2, y2)) (14)

=

∫
B×B

||(x1, y1)− (x2, y2)||dΓ((x1, y1, z1), (x2, y2, z2)) (15)

≤
∫
B×B

||(x1, y1, z1)− (x2, y2, z2)||dΓ((x1, y1, z1), (x2, y2, z2)). (16)

We conclude that

W1(µ, ν) = inf
Γ

∫
B×B

||u− v||dΓ(u, v) ≥ inf
T#Γ

∫
D×D
||u− v||d(T#Γ)(u, v) ≥W1(P#µ, P#ν),

(17)

where the last inequality is because any J = T#Γ is a valid transportation measure for (P#µ, P#ν).

Lemma 2. Let I1, I2 be tomographic projections of ρ at viewing angles u,v respectively. Then

WR
1 (I1, I2) ≤ 2 sin (](u,v)/2) ≤ ](u,v). (18)

Proof. The second inequality is immediate, since for all θ ≥ 0 we have sin(θ) ≤ θ. We denote the
tomographic projection of ρ at orientation R ∈ SO(3) as TRρ. Without loss of generality, I1 = TIρ
where I is the identity matrix and so u = (0, 0,−1) and I2 = TRρ = TI(ρ ◦ RT ). decompose
R = R1 ◦R2 to an in-plane rotation R1 ∈ SO(2) and R2 an out-of-plane rotation (has axis in R2).

We observe the chain of inequalities:

WR
1 (I1, I2) = WR

1 (I1, TI((ρ ◦RT2 ) ◦RT1 )) (19)

= WR
1 (I1, TI(ρ ◦RT2 )) (20)

≤W1(I1, TI(ρ ◦RT2 )) (21)

= W1(P#ρ, P#(ρ ◦RT2 )) (22)

≤W1(ρ, (ρ ◦RT2 )) (23)
≤ 2 sin (](u,v)/2) . (24)

The first equality comes from the decomposition of R, the second comes from the invariance of WR
1

to in-plane rotations, the third inequality comes from the definition of WR
1 , and the fourth equality
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rewrites TIρ = P#ρ. The fifth inequality comes from Lemma 1. The final step of this chain comes
from the Monge formulation of the Wasserstein metric (Peyré and Cuturi, 2019), from which it
follows that for any two probability distributions on B, P,Q we have

W1(P,Q) ≤
∫
B

‖x− F (x)‖dP (x). (25)

For F : B → B, F#P = Q. It is immediate from this statement that using the map F ((x, y, z)) =
R2(x, y, z) we obtain that

W1(ρ, ρ ◦RT2 ) ≤
∫
B

||(x, y, z)−R2(x, y, z)||dρ(x, y, z). (26)

Furthermore, for any vector (x, y, z) with ‖(x, y, z)‖ ≤ 1, we have

‖(x, y, z)−R2(x, y, z)‖ ≤ 2 sin(θ/2), (27)

where θ is the angle of rotation of R2 in its axis-angle representation. This gives,

W1(ρ, ρ ◦RT2 ) ≤ 2 sin (](u,v)/2) . (28)

which completes our proof.

Corollary 1. Let I1, I2 be tomographic projections of ρ at viewing angles u,v respectively. Then

WR
p (I1, I2) ≤

[
2 sin (](u,v)/2)

]p ≤ ](u,v)p. (29)

This comes from the fact that Wp(I1, I2) ≤ W1(I1, I2)p (Peyré and Cuturi, 2019) from which we
obtain WR

p (I1, I2) ≤WR
1 (I1, I2)p and the subsequent chain of inequalities.

A.2 Proof of Proposition 2

Let ρ be differentiable, and |∇ρ| ≤ B. Then for two tomographic projections of ρ, I1, I2 at angles
v,u we have

LR2 (I1, I2) ≤ 2
√
πB](u,v). (30)

Proof. This is a consequence of the mean value theorem. Without loss of generality, let us assume
that I1 = TI(ρ) where I is the identity matrix and so v = (0, 0,−1). Let I2 = TR(ρ). We can
decompose R into an in-plane component R1 ∈ SO(2) and an out-of-plane component R2 such that
R = R1 ◦R2 and R2 has its axis of rotation in R2. Because LR2 (I1, I2) is invariant to rotations of I2,
LR2 (I1, I2) = LR2 (I1, TR(ρ ◦R1)) which means that since RTR1 = RT2 ,

LR2 (I1, I2) = LR2 (I1, TI(ρ ◦RT2 )) (31)

≤ L2(I1, TI(ρ ◦RT2 )) (32)

=

√∫
D

(

∫ 1

−1

(ρ(x, y, z)− ρ ◦RT2 (x, y, z))dz)2 (33)

≤

√∫
D

(∫ 1

−1

(sup |∇ρ|)|φ|dz
)2

(34)

≤ 4
√
πB| sin(φ/2)| ≤ 2

√
πB|φ|. (35)

The second to last line holds because by the mean value theorem

||ρ(x, y, z)− ρ ◦RT2 (x, y, z)|| ≤ (sup |∇ρ|)||(x, y, z)−RT2 (x, y, z)||. (36)

We observe that the distance the point (x, y, z) travels when acted on by RT2 is equal to the out-of-
plane angle φ that RT2 rotates by multiplied by the distance from (x, y, z) to the axis of RT2 which is
≤ 1. Thus we can upper bound ||(x, y, z)−RT2 (x, y, z)|| ≤ |2 sin(φ/2)| ≤ |φ|. Since |φ| = ](u,v)
we achieve the desired upper bound.
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