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Abstract

Protein-peptide interactions play a fundamental role in facilitating many cellular
processes. Here, we introduce PepNN-Struct and PepNN-Seq, structure and se-
quence based approaches for the prediction of peptide binding sites on a protein
given the sequence of a peptide ligand. These models make use of a novel recipro-
cal attention module that simultaneously updates peptide and protein embeddings
while enforcing symmetry in the attention values, thereby better reflecting bio-
chemical realities of peptides undergoing conformational changes upon binding.
To compensate for the scarcity of peptide-protein complex structural information,
we used transfer learning in two ways; pre-training on a large dataset derived from
protein-protein complexes, and using a pre-trained contextualized language model
to embed protein sequences. On an independent test set, PepNN-Struct achieved
an area under the ROC curve (ROC AUC) of 0.893 and a Matthews correlation
coefficient (MCC) of 0.483. The ROC AUC and MCC of PepNN-Seq on the same
dataset were 0.859 and 0.401 respectively. The models were furthermore tested
on benchmark datasets from recent studies and PepNN-Struct resulted in up to a
9.3% increase in ROC AUC relative to the best performing existing approaches.
Beyond prediction of binding sites on proteins with a known peptide ligand, we
also showed that the developed models can make reasonable peptide-agnostic
predictions, allowing for the identification of novel peptide binding proteins. One
identified putative novel peptide binding module is the ORF7a accessory protein
from Sars-Cov-2. Molecular dynamics simulations suggest that a linear segment of
the Bone marrow stromal antigen 2 (BST-2) human protein can indeed stably bind
to the predicted binding site.

1 Introduction

Interactions between proteins and peptides are critical for a variety of biological processes. These
interactions are especially prevalent in signal transduction pathways and include the binding of
peptide ligands to extracellular receptors [[1], as well as the binding of intracellular peptide recognition
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modules (PRMs) to linear segments in other proteins [2]. Modifying these interactions and their
regulation consequently has implications for disease. Many proteins with PRMs encode sites of
oncongenic mutations [3]. It has also been shown that viral proteins encode peptidic motifs that can
potentially be used to hijack host machinery during infection [4].

In the absence of experimentally solved structures, gaining molecular insight into these interactions is
contingent on the ability to model peptide binding computationally. Traditionally, this has been done
using peptide-protein docking, which involves sampling from the conformational space of a protein
and an interacting peptide, and evaluating each conformation using a function based on geometry
or electrostatics [S]. One widely used peptide docking tool is FlexPepDock, a Rosetta protocol that
refines coarse-grain peptide-protein conformations by sampling from the degrees of freedom within a
peptide [6]. In general, benchmarking studies have shown that peptide docking approaches often fail
to accurately identify the native complex conformation [[7, 8, 9]. These approaches are limited by
the high flexibility of peptides as well the inherent error of scoring heuristics [5]. Machine learning
approaches have significant potential as alternatives to docking, as they can sidestep the issue of
explicit enumeration of conformational space and can learn scoring metrics directly from the data.

Both random forest models and support vector machines (SVMs) have been applied with some
success to the preliminary problem of predicting the binding sites of peptides [10} [11} 12} [13]. While
contemporary deep learning approaches have resulted in large improvements to multiple problems in
the domains of protein and structural biology, larger models have had limited success on this task
[14], likely due to the the paucity of available structural protein-peptide complex data. Based on this,
we sought to incorporate transfer learning with a modern deep learning architecture to improve upon
existing approaches. In particular we sought to exploit the large amount of available protein-protein
complex information. The "hot segment" paradigm of protein-protein interaction suggests that the
interaction between two proteins can be mediated by a linear segment in one protein that contributes
to the majority of the interface energy [15]. Complexes of protein fragments with receptors thus
represent a natural source of data for model pre-training.

Recently, the idea of pre-training contextualized language models has been adapted to protein biology
for the purpose of generating meaningful representations of protein sequences [[16,[17]. The success
of these approaches provides an opportunity to develop a strictly sequence based peptide binding
site predictor. By integrating the use of contextualized-language models, available protein-protein
complex data, and a task-specific attention based architecture, we developed parallel models for
both structure and sequence based peptide binding site prediction; PepNN-Struct and PepNN-Seq.
Comparison to existing approaches revealed that our models perform better in most cases. The
developed models can make reasonable peptide agnostic predictions, allowing for their use for the
identification of novel peptide binding sites.

1.1 Related work

Like the approach developed in this study, the Interpep approach integrates machine learning (random
forest classifiers) with available protein-protein complex information to improve peptide binding
site prediction [[10]. Unlike this approach, however, Interpep relies on explicit structural alignments
with receptors from protein-protein complexes, inherently limiting the approach to complexes with
structural homologs in the Protein databank (PDB). PepBind is another approach that uses sequence
and structure based alignment to generate features as input to an SVM [[L1]]. Other machine learning
approaches have been developed for this task, but with considerably less success [[13, (12} [14]. An
approach has also been previously developed to elucidate the basis of peptide-protein binding at the
molecular level by learning graph representations of inter-molecular amino acid dependencies [18]].
While this study focused specifically on PDZ domains, the use of graphs to model inter-molecular
dependencies is similar to the use of attention in this study to relate peptide and protein residues.

While more modern machine learning approaches have shown limited success on the task of identi-
fying peptide binding sites, recent studies have applied such approaches to related tasks. A novel
machine learning method was developed for the task of predicting peptide-protein interactions [19].
A deep learning approach has also been developed to extract information about potential biomolecular
interactions from a protein’s surface [20]]. This approach was applied to the identification of sites of
protein-protein interactions, as well as the interactions between proteins and small molecules [20].
Deep learning approaches using graph convolutional layers and attention modules have furthermore
been used to rank protein-protein and protein-peptide docks [21} 122, [23].



2 Methods

2.1 Datasets

A dataset of protein-peptide complexes was generated by filtering complexes in the PDB. Crystal
structures with a resolution of at least 2.5 A that contain a chain of at least 50 amino acids in complex
with a chain of 25 or less amino acids were considered putative peptide-protein complexes. Using
FreeSASA [24]], complexes with a buried surface area of less than 400 A? were filtered out, leaving
3046 complexes. The sequences of the receptors in the remaining complexes were clustered at a
30% identity threshold using PSI-CD-HIT [_25]], and the resulting clusters were divided into training,
validation, and test sets at proportions of 80%, 10% and 10% respectively. The test set contains 305
examples and will hereafter be referred to as TS305.

A similar process was used to generate a dataset of protein fragment-protein complexes. Using the
PeptiDerive Rosetta protocol [26]], the PDB was scanned for protein fragments of length 5-25 amino
acids with a high predicted interface energy when in complex with another chain of at least 50 amino
acids. Complexes were filtered out based on the distribution of predicted interface energies from
the dataset of real protein-peptide complexes. Only complexes with an interface score less than one
standard deviation above the mean of the peptide-protein complex distribution were maintained. The
complexes were furthermore filtered by buried surface area. Complexes with less than 400 A2 were
once again filtered out. The final dataset contained 406 365 complexes. In both datasets, binding
residues were defined as those residues in the protein receptor with a heavy atom within 6 A from a
heavy atom in the interacting chain.

In addition to TS305, the models were also tested on benchmark datasets compiled in other studies.
This includes the test dataset used to evaluate the Interpep approach [[10] (TS251), the test dataset
used to evaluate the PepBind approach [[11]] (TS639), and the test dataset used to evaluate SPRINT-Str
[12] (TS125).

2.2 Input representation

In the case of PepNN-Struct, input protein structures are encoded using a previously described graph
representation [27], with the exception that additional node features are added to encode the side
chain conformation at each residue. In this representation, a local coordinate system is defined at each
residue based on the relative position of the Ca to the other backbone atoms [27]. The edges between
residues encode information about the distance between the resides, the relative direction from one
Ca to another, a quaternion representation of the rotation matrix between the local coordinate systems,
and an embedding of the relative positions of the residues in the protein sequence [27]. The nodes
include a one-hot representation of the amino acid identity and the torsional backbone angles [27].

To encode information about the side-chain conformation, the centroid of the heavy side chain atoms
at each residue is calculated. The direction of the atom centroid from the Ca is represented using
a unit vector based on the defined local coordinate system. The distance is encoded using a radial
basis function, similar to the encoding used for inter-residue distances in the aforementioned graph
representation [27]. A one-hot encoding is used to represent protein and peptide sequence information.
The pre-trained contextualized language model, ProtBert [17]], is used to embed the protein sequence
in PepNN-Seq.

2.3 Model architecture

The developed architecture takes inspiration the original Transformer architecture [28], as well
the Structured Transformer, developed for the design of proteins with a designated input structure
[27]. The model uses multi-head attention layers developed in the former to encode peptide and
protein sequence context, and graph attention modules developed in the latter to encode structural
context (Figure 1A, B). The model introduced here differs, however, in the fact that it does not
follow an encoder-decoder architecture. This is based on the fact that encoding the peptide sequence
independently would implicitly assume that all information about the peptide is contained within its
sequence. This assumption is not concordant with the fact that many disordered regions undergo
conformational changes upon protein binding [29]]. A peptide’s sequence is thus insufficient to
determine its conformation in a particular system.
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Figure 1: Model architecture and training procedure. A) Attention layers are indicated with orange,
normalization layers are indicated with blue and simple transformation layers are indicated with
green. B) Input layers for PepNN-Seq. C) Transfer learning pipeline used for model training.

As an alternative, we introduced multi-head reciprocal attention layers, a novel attention-based
module with some similarity to a layer that was recently used for salient object detection [30].
This module simultaneously updates the peptide and protein embeddings while ensuring that the
unnormalized attention values from protein to peptide residues are equal to the unnormalized attention
values in the other direction. Consequently, symmetry is enforced in the updates of the protein and
peptide embeddings. Scalar dot product attention, mapping queries, represented by matrix (), and
key-value pairs, represented by matricies K and V/, to attention values typically takes the following
form:

Attention(Q), K, V') = softmax( QKT
s Vi,

In reciprocal attention modules, protein residue embeddings are projected to a query matrix, @ €
R™*4xand a value matrix, Vorot € R™*4v_where n is the number of protein residues. Similarily,
the peptide residue embeddings are projected a key matrix, K € R™*% and a value matrix,
Viep € R™*%v where m is the number of peptide residues. The resulting attention values are as
follows:

)V [28]

. QK
Attention,,,..; (Q, K, V,,) = softmax(——
/4 t( P P) ( M

QT
Vi,
Projecting the residue encodings multiple times and concatenating the resulting attention values
allows extension to multiple heads, as described previously [28]]. The overall model architecture
includes alternating self-attention and reciprocal attention layers, with a final set of layers to project

the protein residue embedding down to a residue-wise probability score (Figure 1A). For the purpose
of regularization, dropout layers were included after each attention layer.

)Woep

Attention,e, (Q, K, Virot) = softmax( Worot
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Figure 2: Impact of transfer learning on model performance on the peptide complex validation
dataset. A) ROC curves on all residues in the dataset using predictions from PepNN-Struct trained
on different datasets. B) Comparison of the distribution of ROC AUCs on different input proteins
using predictions from PepNN-Struct with different training procedures and sequence embeddings
(Wilcoxon signed-rank test). C) Predictions of the binding site of the Bro domain of HD-PTP (PDB
code 5CRYV) using PepNN-Struct trained on different datasets. D) ROC curves on all residues in the
dataset using predictions from the sequence model with different training procedures and sequence
embeddings. E) Comparison of the distribution of ROC AUCs on different input proteins using
predictions from PepNN-Seq trained on different datasets (Wilcoxon signed-rank test).

Model hyperparameters were tuned using random search to optimize the cross-entropy loss on the
fragment complex validation dataset. Specifically eight hyperparameters were tuned; d,,oq¢; (the
model embedding dimension), d; (the dimension of the hidden layer in the feed forward layers), d,
d,, the dropout percentage, the number of repititions of the reciprocal attention module, the number
of heads in each attention layer, and the learning rate. In total, 100 random hyperparameter trials
were attempted. d,,oqe; Was set to 64, d; was set to 64, dj, was set to 64, d,, was set to 128, dropout
percentage was set to 0.2, the number of repetitions of the reciprocal attention module was set to 6,
and each multi-head attention layer was composed of 6 heads.

2.4 Training

Training was done using an Adam optimizer with a learning rate of le-4. A weighted cross-entropy
loss was optimized to take into account the fact that the training dataset is skewed towards non-binding
residues. In both the pre-training step with the fragment complex dataset and the training with the
peptide complex dataset, early stopping was done based on the validation loss. Training was at most
500 000 iterations during the pre-training step and the at most 25 000 iterations during the fine-tuning
step.

2.5 Scoring potential novel peptide binding sites

Peptide-agnostic prediction was performed by providing the model with a protein sequence/structure
and a poly-glycine sequence of length 10 as the peptide. To quantify the model’s confidence that
a protein is a peptide-binding module, a score was generated that takes into account the binding
probabilities that the model assigns the residues in the protein, as well as the percentage of residues
that the model predicts are binding residues with high confidence. This score quantifies the likelihood
that a protein contains a site that could reasonably bind a peptide ligand.

To compute this score, a Gaussian distribution was fit to the distribution of binding residue percentages
in each protein from the training dataset. The resulting score was the weighted average of the top n
residue probabilities and the likelihood that a binding site would be composed of those n residues



Table 1: Comparison of the developed model to existing approaches

Test dataset  Training dataset size ~Model ROC AUC MCC
TS305 2394 PepNN-Struct 0.893 0.483
PepNN-Seq 0.859 0.401
TS251 251 PepNN-Struct 0.817 0.370
PepNN-Seq 0.758 0.278

Interpep [10] 0.793 —
TS639 640 PepNN-Struct 0.838 0.301
PepNN-Seq 0.792 0.251
PepBind [[1L1] 0.767 0.348
TS125 640 PepNN-Struct 0.841 0.321
PepNN-Seq 0.805 0.278
PepBind [[L1] 0.793 0.372
1156 SPRINT-Str [12]  0.780 0.290
1199 SPRINT-Seq [13] 0.680 0.200
1004 Visual [[14] 0.730 0.170

based on the aforementioned Gaussian. For each protein, n was chosen to maximize the score. On the
basis that the score should correlate with the correctness of model predictions, the weight assigned to
each component of the score was chosen so that the correlation between the MCC of each protein in
the validation dataset and its score was maximized.

2.6 Protein-protein docking and molecular dynamics simulations on ORF7a/BST-2

The structure of the SARS-CoV-2 ORF7a encoded accessory protein (PDB ID 6W37) and mouse
BST-2/Tetherin Ectodomain (PDB ID 3NIO [31]) were used as input structures for the ClusPro
webserver [132, 33]]. The top 10 results, ranked by binding affinity, were retrieved for further analysis.
The ClusPro docking poses of the ORF7a/BST-2 complex were directly used as input to the Charmm-
gui webserver [34)135]136] to set up MD systems. The systems have a size of approximately 1803
A3 and a total of 570,000 atoms. To speed up the simulation, a truncated system was also created.
Amino acids after residue 100 in BST-2 were removed, resulting in a system of size 1003 A3 and
approximately 91,300 atoms. The energy minimization and MD simulations were performed with
the GROMACS program [37]] version 2019.3 GPU using the CHARMM36 force field [38, [39]] and
TIP3P water model [40].

3 Results

3.1 Transfer learning significantly improves model performance

We used transfer learning in two ways to improve model performance. The first was to pretrain the
model on a large protein fragment-protein complex dataset before fine-tuning with a smaller dataset of
peptide-protein complexes (Figure 1C). The second was to use a pre-trained contextualized language
model, ProtBert [17]], to embed protein sequences in PepNN-Seq (Figure 1B). To evaluate the impact
of transfer learning on model performance, we trained PepNN-Struct and PepNN-Seq using different
procedures. Pre-training PepNN-Struct resulted in significant improvement over models trained on
only the fragment or peptide complex dataset, both in terms of over all binding residue prediction, and
in terms of prediction for individual proteins (Figure 3A, B). Model predictions on the Bro domain of
HD-PTP demonstrate this difference in performance, as only the pre-trained variant of the model
correctly predicts the peptide binding site (Figure 3C).

Embedding protein sequences with ProtBert resulted in large performance improvements over
learned embedding parameters for PepNN-Seq (Figure 3D, E). Interestingly, pretraining on the
fragment complexes did not have a large impact on PepNN-Seq performance (Figure 3B, D). This
may suggest that pre-training on the fragment complexes allows PepNN-Struct to learn reasonable
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Figure 3: Peptide-agnostic binding site prediction using PepNN-Struct and PepNN-Seq. A) ROC
curves on the validation dataset using PepNN-Struct with different input peptide sequences. B) ROC
curves on the validation dataset using PepNN-Seq with different input peptide sequences. C) Scores
assigned by PepNN-Struct to different domains in the PDB. D) Scores assigned by the PepNN-Seq to
different domains in the reference human proteome.

protein embeddings while the use of a pre-trained contextualized language model is sufficient for the
generation of reasonable embeddings in the case of PepNN-Seq.

3.2 Comparision to existing approaches

We initially evaluated the developed models on the independent test set derived from the peptide
complex dataset. Unsurprisingly, PepNN-Struct outperforms PepNN-Seq (Table 1). For a more
unbiased comparison to existing approaches, we also re-trained the models on the datasets used in
recently developed machine learning approaches prior to comparison on their test sets.

In all cases, PepNN-Struct largely outperforms existing approaches in terms of ROC AUC (Table
1). In most cases, PepNN-Seq also outperforms existing approaches by this metric. The models do,
however, perform worse in terms of MCC in a couple of cases, suggesting that there exist thresholds
at which the models do not perform was well as the PepBind approach, despite having more robust
performance at different prediction thresholds. It is worth noting that the training datasets used in
other studies were substantially smaller and thus training on them resulted in lower performance of
our models. This was both due to the fact that the datasets used in other studies are relatively outdated
and that a larger portion of the available data was used for testing in these studies.

3.3 Peptide-agnostic prediction allows the identification of novel peptide-binding proteins

Recent work has suggested that a protein’s surface contains the majority of information regarding
its capacity for biomolecular interactions [20]. To quantify the extent to which the model relies
on information from the protein when making predictions, we tested the ability of PepNN-Struct
and PepNN-Seq to predict peptide binding sites using random length poly-glycine peptides as input
sequences. In both the case of PepNN-Struct and PepNN-Seq, replacing the native peptide sequence
with a poly-glycine peptide resulted in a slight decrease in performance (Figure 3A, B). This suggests
that while providing a known peptide can increase model accuracy, the model can make reasonable
peptide-agnostic predictions.

Based on this observation, we used the models to predict binding sites for domains in every unique
chain in the PDB not within 30% homology of a sequence in the training dataset and domains in
every sequence in the reference human proteome from UniProt [41]], not within 30% homology of a
sequence in the training dataset. Scores were generated for the various domains as described in the
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Figure 4: A) ORF7a peptide binding site prediction. B) Ensemble plot of putative ORF7a/BST-2
complex from a 300 ns MD simulation. C) Hydrogen bonds between residues at the BST/ORF7a
interface in the predicted complex.

methods. Domains were extracted by assigning PFAM annotations using InterProScan [43]]. To
assess the capacity of the models to discriminate between peptide binding modules and other domains,
we compared the distribution of scores for canonical PRMs to that of other proteins. Previously
defined modular protein domains [44]], and peptide binding domains [19] were considered canonical
PRM:s.

In both the case of the PDB and the human proteome, the model generally assigns higher scores to
canonical PRMs than other domains (Figure 3C, D). Nonetheless, there was overlap between the two
distributions. Many of the non-canonical proteins that scored highly are other proteins with known
peptide-binding capabilities, such as major histocompatibility complexes. In total, PepNN-Struct
assigns 39 623 domains in the PDB a score higher than the mean PRM score and PepNN-Seq assigns
10 332 domains in the human proteome a score higher than the mean PRM score. One domain
identified by PepNN-Struct is the sterile alpha motif (SAM) domain of the Deleted-in-liver cancer 1
(DLC1) protein, which was assigned a very high score (1.095). This domain was recently shown to
be a peptide binding module [45], demonstrating the capacity of the model to identify novel peptide
binders.

3.4 The ORF7a protein is a potential peptide-binding module

Another interesting hit identifed using PepNN-Struct is the ORF7a accessory protein from the SARS-
Cov-2 virus (score of 1.045). The model predicts that this protein has a peptide binding site located
between two beta-sheets at the N-terminal end of the protein (Figure 4A). Validating this peptide
binding site involves identifying a binding peptide and showing that the residues that comprise the
binding site are necessary for the interaction. The ORF7a homolog from SARS-Cov has been shown
to bind the ectodomain of the human BST-2 protein [46]]. BST-2 binds and tethers viral particles to
the cell membrane, thereby preventing viral exit [46]]. It was shown that by binding BST-2, ORF7a
prevents its glycosylation and thus reduces its ability to inhibit viral exit [46]]. Given the fact that
BST-2 forms a coiled-coil structure, it is possible that a linear segment along one of its helices binds
to ORF7a at the predicted peptide-binding pocket.

As a preliminary, unbiased, test of this prediction, we performed global docking of BST-2 onto ORF7a
using the ClusPro webserver [32, [33]]. In seven of the top ten poses, BST-2 was found to interact
with ORF7a at the predicted binding site. In four of these poses, the N70 residue on BST-2, a known
glycosylation site [47]], was completely buried. To validate these docking results, those four systems
were subject to short, 50 ns, MD simulations. ORF7a was stably bound to BST-2 in one of the four
systems. To better evaluate this putative binding conformation at a longer time scale, a truncated
system was built and it was subjected to three simulations of at least 200 ns. ORF7a remained bound
to BST-2 throughout the different trajectories (Figure 4B), and hydrogen bond analysis showed that
several charged/polar sidechains at the interface contribute to the majority of the binding affinity
(Figure 4C).



4 Conclusions

We developed parallel structural and sequence based models for the prediction of peptide binding sites.
This was done by developing of a novel attention based module as well as the use of transfer learning
to compensate for the paucity of peptide-protein complex data. The developed model outperformed
existing approaches in terms of ROC AUC on multiple test datasets. Unlike previously developed
approaches, the model does not rely on structrual or sequence alignments and is thus also more
versatile. The model is furthermore capable of making peptide-agnostic predictions. We showed that
the model predictions can be turned into a score to quantify the model’s confidence that a module
can bind peptides. As a demonstration of the model’s capacity to identify novel peptide binders, we
performed MD simulations on putative ORF7a/BST-2 complexes, suggesting that the former protein
can potentially bind a linear fragment of BST-2 at a predicted peptide binding site. The model can
thus be used to uncover new biology about proteins as well as identify sites on proteins that can
potentially be targetted for therapeutic applications.



Broader Impact

The work presented here has potential applications in both exploratory research and therapeutic
design. The ability to identify novel peptide binders can potentially be used to discover new biology
mediated by peptide interactions. The model can also be incorporated into local docking pipelines to
improve the generation of protein-peptide complex models. This can be used to gain an understanding
of the moleular mechanisims underlying various cellular processes. The ability to accurately identify
peptide binding sites in a peptide-agnostic matter can furthermore be used to discern regions in a
protein that can be readily be targetted by peptides. Model predictions can thus be used to inform the
application of experimental approaches such as phage dispay to different proteins for the potential
identification of therapeutic peptides.
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