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Abstract

For protein sequence datasets, unlabeled data has greatly outpaced labeled data
due to the high cost of wet-lab characterization. Recent deep-learning approaches
to protein prediction have shown that pre-training on unlabeled data can yield
useful representations for downstream tasks. However, the optimal pre-training
strategy remains an open question. Instead of strictly borrowing from natural lan-
guage processing (NLP) in the form of masked or autoregressive language mod-
eling, we introduce a new pre-training task: directly predicting protein profiles
derived from multiple sequence alignments. Using a set of five, standardized
downstream tasks for protein models, we demonstrate that our pre-training task
along with a multi-task objective outperforms masked language modeling alone
on all five tasks. Our results suggest that protein sequence models may bene-
fit from leveraging biologically-inspired inductive biases that go beyond existing
language modeling techniques in NLP.

1 Introduction

Experimental measurements of protein properties, ranging from structural to functional character-
ization, are usually far more expensive than gathering unlabeled protein sequence data (Rocklin
et al., 2017; Stevens, 2003). Predicting protein properties directly from sequence data using ma-
chine learning models could potentially enable a new era of biological discovery. However, the vast
majority of existing protein sequence data is unlabeled, lacking both structural (e.g. x-ray crys-
tallography) or functional (e.g. enzymatic activity) labels. In other domains, such as computer
vision or natural language processing (NLP), existing approaches leverage large, unlabeled datasets
via self-supervised pre-training: the practice of first training a model using a loss function derived
solely from unlabeled data. In the protein domain, self-supervision has recently been successful at
improving downstream performance on canonical tasks in protein science and engineering (Devlin
et al., 2019; Rao et al., 2019).

There are several similarities between protein sequence modeling and NLP—namely, sequences
comprised of a discrete set of characters as input, and far more unlabeled data than labeled. This
has inspired many recent papers adapting NLP models to protein sequence tasks (Alley et al., 2019;
Elnaggar et al., 2020; Consortium, 2019; Madani et al., 2020; Rives et al., 2019; Strodthoff et al.,
2020; Nambiar et al., 2020). These papers employ not only architectures inspired by NLP but also
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Figure 1: An overview of our proposed task. We start with an initial sequence “PTHSLKQLDH”. We
generate a multiple sequence alignment for that sequence by searching it against a reference database, and we
then generate a profile HMM for the alignment. The first H and the Q in our sequence correspond to inserted
amino acids that didn’t match any columns in the alignment. Therefore, for those amino acids we use insertion
state emissions as labels rather than match state emissions. The rest of the amino acids in our sequence were
in match states, so we use the match state emission probabilities as labels. Our protein has deletions in two of
the match states in the MSA (columns 2 and 3). We omit these from the label since they have no corresponding
amino acids as inputs. Finally, we predict the corresponding label using KL divergence, averaged over the
length of the sequence.

pre-training objectives: masked language modeling and auto regressive generation. Unfortunately,
on some tasks, such as secondary structure and contact prediction, purely using masked language
modeling objectives for pretraining has only marginally improved performance as compared to stan-
dard alignment-based techniques (Rao et al., 2019). This presents an opportunity to design new
pre-training tasks and inductive biases that are better tailored toward the underlying protein biology.

Some existing work has already begun to investigate protein-specific pre-training tasks. Bepler and
Berger (2018) propose a new task called soft symmetric alignment (SSA), which defines a custom
similarity function that compares the pairwise distances between protein embeddings. Lu et al.
(2020) introduce a contrastive loss that trains an RNN to discriminate fragments coming from a
source sequence versus randomly sampled fragments from other sequences. Our work differs from
both existing works in that we make direct use of multiple sequence alignments (MSAs).

In this paper, we introduce a new pre-training task for protein sequence models. Our task is inspired
by alignment-based protein structure predictors: the very models that outperform existing deep NLP
models at protein structure prediction (Klausen et al., 2019; Elnaggar et al., 2020; Ma et al., 2015).
Such models take as input features derived from multiple sequence alignments (MSAs), which clus-
ter proteins with related sequences. Features derived from MSAs, such as position-specific scoring
matrices and hidden Markov model profiles, have long known to be useful features for predicting the
structure of a protein (Cuff and Barton, 1999; Jones, 1999; Cuff and Barton, 2000; Rost, 2001). Our
task posits the reverse: that, in order to predict profiles derived from MSAs from a single protein
in the alignment, a network must learn information about that protein’s structure. Specifically, we
propose to use HMM profiles derived from MSAs as labels during pre-training, rather than as input
features in a downstream task. An overview of the task is depicted in Figure 1.

The remainder of this paper is organized as follows. In Section 2, we describe our pre-training
task in detail as well as the architecture and hyperparameters we use for further experiments. In
Section 3, we compare our pre-training task against masked language modeling and a multitask loss
that combines the two of them, while keeping architecture, hyperparameters and pre-training data
constant. We also compare our model to existing models in the literature. Section 4 concludes with
possibilities for future work.

2 Methods

In this section, we describe in detail our pre-training task as well as specifics regarding training and
architecture details. We begin with an overview on multiple sequence alignment.
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2.1 Multiple Sequence Alignments

Multiple sequence alignment (MSA) is a method for grouping a series of related proteins. MSA
arranges proteins in a matrix whose rows are individual protein sequences and whose columns con-
tain amino acids that either come from the same position in some ancestral sequence (homologous),
or play a common structural or functional role. Building an MSA is a common first step in many
downstream tasks including predicting structure and finding homologous proteins (Edgar and Bat-
zoglou, 2006). For our models, we use the pre-training data introduced in Rao et al. (2019), which
comprises 32 million sequences from Pfam (El-Gebali et al., 2019). Pfam further contains pre-built
MSAs for each of its entries, grouped into a set of families. Although it would be possible to build
a set of multiple sequence alignments for any protein sequence dataset using standard alignment
tools (Higgins et al., 1992; Corpet, 1988; Sievers et al., 2011), we use the existing multiple sequence
alignments from the 32.0 release of Pfam.

2.2 Predicting Alignment Profiles

Once an MSA is built, it is common to fit a profile HMM, which model the probabilities of amino
acids appearing in the columns of an MSA, as well as the probability of inserting additional amino
acids between columns or deleting existing columns. It is common to use features derived from
profile HMMs as input to structure prediction models, as these profiles contain information about the
evolutionary history of a protein (Klausen et al., 2019). In particular, the emission probabilities give
insight into which positions in the proteins are likely to mutate or remain constant over the course of
evolution. This in turn illuminates which portions of the protein are critical for the protein’s structure
or function. For a review on profile HMMs, see Eddy (1998). We build profile HMMs from multiple
sequence alignments using HMMER (Finn et al., 2011) with the default arguments.

Our proposed task is to predict a protein’s profile HMM directly from it sequence. Formally, we
represent a protein sequence x of length n as x1x2 . . . xn and the MSA it belongs to as a matrix:

A =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
... · · ·

...
ak1 ak2 · · · akm


where k is the number of sequences in the alignment and m ≥ n is the length of the alignment.
Without loss of generality, we assume that x is the first sequence in the alignment; that is, there
exists an injective map g : [n] 7→ [m] such that i ≤ g(i) and xi = a1g(i) for all i ∈ [n]. We
let h : {aij ∈ A} 7→ {M, I,D} be the MSA state function which maps amino acids to the three
possible states in an MSA:

1. Match: aij is an amino acid that is related, evolutionarily or structurally, to other amino
acids in column j.

2. Insertion: aij is an amino acid that is not related to other amino acids in its column, but is
more likely the result of a mutation that inserted additional amino acids.

3. Deletion: aij is not an amino acid, but rather a column in which protein i is missing an
amino acid where other proteins in the MSA have amino acids that are either matched or
inserted.

A profile HMM built from this MSA is represented by the match state emissions pM1 p
M
2 . . . pM` and

the insertion state emissions pI1p
I
2 . . . p

I
` , as well as an injective function f : [`] 7→ [m] which maps

the indices of the profile back to the columns of the MSA. pMj and pIj are probability vectors of size
S containing the probability of seeing each amino acid in column f(j) in match or insertions states
respectively:

S∑
s=1

(pMj )s = 1, (pMj )s ≥ 0 and
S∑

s=1

(pIj )s = 1, (pIj )s ≥ 0

for an amino acid alphabet of size S. In our experiments, we use the standard 20 amino acids during
profile creation. Note also that f has a well-defined inverse f−1 : [m] 7→ [`].
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We define a sequence of vector labels, l1l2 . . . ln associated with the input sequence x, defined as:

li(x) =

{
pMf−1(g(i)) if h(a1g(i)) =M

pIf−1(g(i)) if h(a1g(i)) = I

The li(x) are well-defined: h(a1g(i)) 6= D,∀i since g(i) only maps to columns in the alignment
where x contains amino acids. Given a network function F , our proposal task’s loss function can be
written as follows:

LPP(x, θ) =
1

n

n∑
i=1

S∑
s=1

li,s(x)(log(li,s(x))− log(Fi,s(x; θ))) =
1

n

n∑
i=1

KLDiv(li(x), Fi(x; θ))

where for Fi,s(x; θ) and li,s the i indexes into the sequence position and the s indexes into the amino
acid output probability. The process is described graphically in Figure 1. We contrast this loss with
the standard masked language modeling objective:

LMLM(x, θ) =
1

n

∑
i∈mask

S∑
s=1

Li,s(x) log(Fi,s(x; θ)) =
1

n

∑
i∈mask

CrossEntropy(Li(x), Fi(x; θ))

for one-hot labels Li,s(x) that are equal to 1 if xi is the sth amino-acid in the vocabulary, and 0
otherwise. We additionally introduce the joint loss:

LJOINT(x, θ, λ) = λLMLM(x, θ) + (1− λ)LPP(x, θ)

for a scaling parameter λ, which in practice we set such that LMLM(x, θ) ≈ LPP(x, θ) over the course
of training.

We note here that our task LPP is non-trivial. From an NLP perspective, it is akin to predicting
a distribution over possible ways to rephrase a sentence while preserving its meaning from only
the original sentence itself. This requires not only knowing which words carry the meaning of the
sentence but also knowing the synonyms of these words in the context of that sentence. Doing so
would require a significant understanding of language. As such, we believe our task encourages
the transformer to learn about underlying protein biology more than simply predicting masked-out
amino acids.

2.3 Data

To evaluate our pre-training task we make use of the TAPE benchmark: a set of five standardized
protein sequence prediction tasks with associated datasets plus a large unlabeled pre-training dataset
derived from Pfam (Rao et al., 2019). We build labels for the pre-training data set using the proce-
dure described above. We then evaluate our pre-trained models on the five downstream TAPE tasks:
secondary structure prediction (Klausen et al., 2019), contact prediction (AlQuraishi, 2019), remote
homology detection (Hou et al., 2018), fluorescence prediction (Sarkisyan et al., 2016), and stability
prediction (Rocklin et al., 2017), using the metrics specified by TAPE.

2.4 Hyperparameters and Training Details

For all experiments we train the default transformer architecture used by Rao et al. (2019), but we
note that our pre-training task is not architecture-specific. We train three models with the three
different objectives above. The profile prediction model used a learning rate of 0.00025, while the
multi-task and masked language modeling models use a learning rate of 0.0001. These learning
rates represented the largest learning rates that did not cause the model to diverge during the course
of training, searching from 0.00001 in increments of 0.00005. All models were pre-trained for 34
epochs.2 The learning rate uses a warm-up schedule and dynamic batch sizing, both of which are

2We cut off pre-training at 34 epochs due to time constraints. It is possible that further gains may result
from continuing to pre-train for longer.
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Pretraining Task Secondary Structure Contact Prediction

CASP12 CB513 TS115 CASP12

Profile Prediction 0.71 0.74 0.77 0.33
Masked Language Modeling 0.67 0.72 0.75 0.24
Multi-Task 0.71 0.72 0.76 0.28
No Pretraining 0.67 0.64 0.68 0.05

Table 1: Comparing Downstream Performance on Structure Prediction

Pretraining Task Fold Superfamily Family

Profile Prediction 0.23 0.45 0.86
Masked Language Modeling 0.14 0.16 0.45
Multi-Task 0.16 0.28 0.68
No Pretraining 0.05 0.05 0.21

Table 2: Comparing Downstream Performance on Homology Detection

described in Rao et al. (2019). Pre-training a single model took approximately two weeks with 8
NVIDIA Tesla V100 GPUs.

Training details for all downstream tasks follow the procedure laid out by Rao et al. (2019): namely,
a learning rate of 0.0001 with linear warm-up schedule, the Adam optimizer and backpropagation
through the entire pre-trained model. The downstream prediction heads all follow those in Rao
et al. (2019), except for contact prediction which uses a single linear layer rather than a 30-layer
convolutional architecture.3

3 Results

3.1 Comparing Pre-training Tasks

We first compare our pre-training task against masked language modeling and the multitask model
which combines both tasks, keeping hyperparameters and architecture fixed. The results are
shown in Tables 1, 2, and 3. For both structure prediction tasks—secondary structure and con-
tact prediction—profile prediction pre-training outperforms multitasking, which in turn outperforms
masked language modeling. All three tasks outperform the same model that was not pre-trained. Al-
though it is not surprising that profile pre-training outperforms mask language modeling on structure
prediction—namely because HMM profiles are known to contain information relevant to a protein’s
structure—the differences between the evaluated models are not large. This may mean that poten-
tially more than just a new pre-training task is needed to continue to improve structure predictors,
such as different architectures, or larger pre-training datasets (Elnaggar et al., 2020).

The remote homology detection task demonstrates the largest gap between profile prediction and
mask language modeling. The model pre-trained with profile prediction is about 2 to 3 times more
accurate than the model pre-trained using masked language modeling. The performance of the mul-
titask model lies between that of the other two models and all three again outperform a randomly
initialized model. This may be because HMM profiles also contain significant amounts of infor-
mation about evolutionarily related proteins, which is closely related to the structural or functional
groupings that a protein falls into.

We find the same pattern on the fluorescence task: profile prediction leads to the best test set per-
formance, followed by multitasking, masked language modeling and no pre-training in that order.
Finally, on the stability task, the masked language modeling model and the multitask model both
outperform profile prediction. This may be because this task tests models’ ability to generalize to
proteins with a single amino acid difference from proteins in the training set—a task that masked
language modeling is particularly suited for. Taken as a whole, these results indicate that there may
not be a one-size-fits-all pre-training task for all downstream prediction tasks. Rather, it may be
beneficial to tailor the pre-training task to the downstream task: for structure or evolutionary tasks,

3This new linear prediction head is the default in the current version of the tape-proteins package.

5



Pretraining Task Downstream Task

Fluorescence Stability

Profile Prediction 0.38 0.55
Masked Language Modeling 0.25 0.63
Multi-Task 0.28 0.63
No Pretraining 0.04 0.45

Table 3: Comparing Downstream Performance on Engineering Tasks

Method Structure Evolutionary Engineering

SS Homology Fluorescence Stability

Pre-trained Transformer 0.73 0.21 0.68 0.73
models from LSTM 0.75 0.26 0.67 0.69
Rao et al. (2019) ResNet 0.75 0.17 0.21 0.73

Baselines from One-hot 0.69 0.09 0.14 0.19
Rao et al. (2019) Alignment 0.80 0.09 N/A N/A

Bepler and Berger (2018) 0.73 0.17 0.33 0.64
Alley et al. (2019) 0.73 0.23 0.67 0.73
Lu et al. (2020) 0.70 0.13 0.68 0.68

Our models Profile Prediction 0.74 0.23 0.38 0.55
Masked Language Modeling 0.72 0.14 0.25 0.63
Multi-Task 0.74 0.16 0.28 0.63

Table 4: Results on downstream supervised tasks

incorporating profile information may be beneficial, but for fine-grained engineering tasks, masked
language modeling may be a better choice.

3.2 Comparing Against TAPE Benchmarks

In this section, we compare against the models presented in the original TAPE benchmark, as well
as some previous literature that makes use of the TAPE benchmark. We omit the contact prediction
task because the tape-proteins package significantly changed the downstream contact prediction
architecture after the paper’s original publication. We note that this was also done by previous work
(Lu et al., 2020). For secondary structure, we present results from the CB513 test set. For remote
homology detection we present results from the fold level prediction task. The results are presented
in Table 4.

On the secondary structure task, we fall short of the NetsurfP2.0 model presented by Klausen et al.
(2019), which is the alignment baseline from Rao et al. (2019). We also fall short of the LSTM
and ResNet models from Rao et al. (2019), but outperform both the Transformer model as well as
all previous work proposing protein-specific pre-training tasks (Bepler and Berger, 2018; Lu et al.,
2020), and a recent paper employing an auto-regressive LSTM (Alley et al., 2019). On the remote
homology task we outperformed all existing models except the TAPE benchmark’s LSTM model
and the LSTM presented by (Alley et al., 2019). We again note that we outperform the protein-
specific pre-training tasks in Bepler and Berger (2018) and Lu et al. (2020). In the engineering
tasks, all of our models are outperformed by existing work, including models from the original
TAPE benchmark and the related works mentioned above.

We also note that we do not view most existing work as mutually exclusive with ours. Instead, we
believe that combining our task with the architectures and pre-training tasks present in existing work
may lead to further performance gains.

4 Conclusion

In this work, we produced a new pre-training task—profile prediction—which encourages a trans-
former to learn a distribution over evolutionarily-related protein sequences from a single input se-
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quence. Our task alone outperforms masked language modeling on downstream tasks related to
structure and homology detection. However, we do find that mask language modeling is still a use-
ful pre-training task for engineering-related downstream tasks, namely, predicting intrinsic stability.
We believe that our work shows that pre-training tasks borrowed from natural language processing
models may not always be ideal for protein sequence models. Instead, we hope that these results
inspire additional interest in developing biologically-informed protein sequence pre-training tasks.
The combination of novel pre-training tasks, new architectures, and massively unlabeled datasets
may be the key to eventually outperforming alignment-based predictors.
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