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Abstract

Inferring molecular structure from NMR measurements requires an accurate for-
ward model that can predict chemical shifts from 3D structure. Current forward
models are limited to specific molecules like proteins and state of the art models
are not differentiable. Thus they cannot be used with gradient methods like biased
molecular dynamics. Here we use graph neural networks (GNNs) for NMR chemi-
cal shift prediction. Our GNN can model chemical shifts accurately and capture
important phenomena like hydrogen bonding induced downfield shift between mul-
tiple proteins, secondary structure effects, and predict shifts of organic molecules.
Previous empirical NMR models of protein NMR have relied on careful feature
engineering with domain expertise. These GNNs are trained from data alone with
no feature engineering yet are as accurate and can work on arbitrary molecular
structures. The models are also efficient, able to compute one million chemical
shifts in about 5 seconds. This work enables a new category of NMR models that
have multiple interacting types of macromolecules.

1 Introduction

NMR chemical shifts of a molecule provide detailed structural information without the sample prepa-
ration requirements of X-ray crystallography[1l]. This means that NMR can provide detail at room
temperature, at reasonable concentrations, in a physiologically relevant ensemble of conformations,
and even in situ[2} 3]]. Thus there is continued interest in methods to resolve protein structure from
NMR. A key step in this process is being able to predict the NMR chemical shifts from molecular
structure in a forward model. The forward model is used for inference to compute the statistical
ensemble of structure that contribute to the observed NMRs chemical shifts in experiment. In this
work, we find that graph neural networks (GNNs) have good properties as a forward model and
expand the types of molecular structures that can be resolved. The process of inferring the confor-
mational ensemble with the forward model can be done via experiment directed simulation[4}, 5],
metadynamics meta-inference[6], targeted metadynamics[7, 18], Monte Carlo/optimization[9}, [10], bi-
asing with restraints[/11} [12], Bayesian ensemble refinement[13]], or other simulation-based inference
methods [14H16]. A direct method like a generative model that outputs structure directly would be
preferred[17, 18], but a forward model that can connect the chemical shift to structure would still be
part of this training.

An ideal NMR chemical shift predictor should be translationally and rotationally invariant, be
sensitive to both chemically bonded and non-bonded interactions, be able to handle thousands of
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atoms, predict shifts for multiple atom types, and be differentiable which is required for most of
the inference methods mentioned above. There are two broad classes of deep learning architectures
that might satisfy these requirements: 3D point cloud neural networks methods that have these
equivarianaces built-in[19, 20], GNNs[21 —23ﬂ Here we use graph neural networks for two reasons.
The first is their flexibility of how molecular graphs can be specified: with or without distances, with
or without covalent bonds, and as a sparse graph. The second reason is that the goal is to use this
model in molecular simulation, where the sparse molecular graph (i.e., a neighbor list) is available as
input.

GNNs are now a common approach for deep learning with molecules due to their intuitive connection
to molecular graphs and good performance[24]. Early examples of graph neural networks can be
found in Sperduti and Starita [25]], Scarselli et al. [26l], Gori et al. [27] and recent surveys can be
found in Wu et al. [28]], Battaglia et al. [29]], Bronstein et al. [21], Dwivedi et al. [22]. In this work,
we have chosen message passing GNNS due to their similarity to other deep learning layers[28]],
simplicity, and good performance[24} 28]. Our models take the molecular graph as input where the
features are the atom identities and the edges are feature vectors encoding the edge type (covalent
bond or nearby neighbor) and distance. The output is the predicted NMR chemical shift for C, N, or
H atoms. This approach is sometimes referred to as enn-s2s[23)30]. Our model is trained with three
datasets: the RefDB dataset of cross-referenced protein structures with NMR chemical shifts[31], the
SHIFTX dataset [32], and a database of organic molecules [33]].

There are numerous existing NMR chemical shift prediction models. We first review those which
are for protein structure. ProShift is a dense neural network with one hidden layer that uses 350
expert chosen input features like electronegativity or dihedral angle with neighbors[34]. SPARTA+
uses dense neural networks with 113 expert-chosen input features[35]]. ShiftX+ uses an ensemble
approach with boosting and uses 97 expert-chosen input features[32]. ShiftX2 combines ShiftX+ with
homology data with a database of known proteins with chemical shift. Note that ProShift, SPARTA+,
ShiftX+ and ShiftX2 are not (easily) differentiable with respect to atom positions due to the use of
input features and homology data. They are also restricted to proteins due to the use of protein-specific
features that are not defined for general molecules. CamShift uses a polynomial expansion of the
pair-wise distances between an atom and its neighbors to approximate the NMR chemical shift[36]
and thus is differentiable. This has made it a popular choice[37H39]] and it is implemented in the
PLUMED plugin[40]. However, CamShift does not treat side-chains and is insensitive to effects like
hydrogen bonding. Of these select methods discussed, ShifX?2 is typically viewed as most accurate
and CamShift as the most useful for use in inferring protein structure in a molecular simulation. Our
goal is to combine the high-accuracy approach of methods like ShiftX?2 with the differentiable nature
of CamShift. Furthermore, our approach does not require hand-engineered features and instead uses
only the elements of the atoms and distances as input. This enables it to be used on both ligands and
proteins.

2 Data Preparation

Our model was trained with three datasets. The first is a paired dataset of 2,405 proteins with both
X-ray resolved crystal structures and measured NMR chemical shifts created by Zhang et al. [31]].
This was segmented into a fragment dataset of 131,015 256 atom fragments with approximately 1.25
million NMR chemical shifts. To prepare the fragments, each residue in each protein was converted
into a fragment. All atoms in prior and subsequent residues were included along with residues
which had an atom spatially close to the center residue, but their labels (chemical shifts) were not
included. Residue 7 is close to residue j if an atom from residue i is one of the 16 closest non-bonded
atoms of an atom in residue j (i.e., they share a neighbor). We did not use distance cutoffs because
neighbor lists are used in subsequent stages and if an atom is not on the neighbor list, it need not be
included in the fragment. Additional preprocessing was omitting fragments with missing residues,
fixing missing atoms, removing solvent/heteroatoms, ensuring the NMR chemical shifts sequenced
aligned with the X-ray structures, and matching chains. This was done with PDBFixer, a part of the
OpenMM framework[41]. About 5% of residues were excluded due to these constraints and 0.93%
were excluded because the resulting fragments could not fit into the 256 atom fragment. Some X-ray
resolved crystal structures have multiple possible structures. We randomly sampled 3 of these (with

TWe do not consider featurization like computing dihedral angles or electronegativity of atoms because they
cannot generalize to arbitrary structures and derivatives do not always exist.



Figure 1: An example graph used as input to the GNN. The atoms in greens will have their chemical
shifts predicted and are connected to neighboring atoms by edges, which includes both bonded and
non-bonded edges. The edges are encoded as feature vectors which contains both an embedding
representing the type of edge (e.g., covalent) and distance.
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Figure 2: Graph neural network architecture. E? is the input molecular graph edge features which is
inverse distance and chemical bond type (covalent or non-bonded). E is the output neighbor features
tensor used for MP layers. VY is the input feature matrix, consisting only of element types. MP

layers have residue connections are defined in Equation[3] There are K MP layers and L output FC
layers. Output is passed through Equation[d]to account for element NMR differences.

replacement) so that some fragments may be duplicated. The number of fragments including these
possible duplicates is 393,045. This dataset will be called RefDB dataset.

The second dataset was prepared identically and contains 197 in the training and 62 proteins in test. It
is the SHIFTX dataset and contains 21,878 fragments for training[32]]. This dataset is higher-quality
(see training curves results) due to careful processing by Han et al. and does not have multiple
possible structures. The SHIFTX test dataset of 62 proteins (7494 fragments) was used for calculation
of all test data and was not included in training. These PDB IDs were also removed from the RefDB
dataset so that they did not inadvertently enter training. These protein datasets contain C, N and H
chemical shifts.

The third dataset was 369 “metabolites” (biologically relevant organic molecules) from the human
metabolome 4.0 database[33]]. These were converted into 3D conformers with RDKit using the
method of Riniker and Landrum [42]]. Here, each molecule is a fragment and no segmenting of
molecules was done. This is referred to as the metabolome dataset.

Each molecular fragment is 256 atoms represented as integers indicating element and each atom has
up to 16 edges that connect it to both spatial and covalent neighbors. The edges contain two numbers:
an encoding of the type of edge (covalent or spatial) and the distance. These two items encode the
molecular graph. An example of a fragment from RefDB dataset is shown in Figure([I] This approach
of using covalent bonds and spatial neighbors is somewhat analogous to attention, which is an open
area of research in GNNs because its effect is not always positive[43].



3 Model

Our GNN consists of 3 parts: (i) a dense network F(E") = E whose input is a rank 3 (omitting batch
rank) edge tensor E° with shape Atom Numberx Neighbor Number x Edge Embedding Dimension
and output E is a rank 3 tensor with shape Atom Numberx Neighbor Numberx Edge Feature
Dimension; (ii) a message passing neural network G(V?, E) whose input is the rank 2 tensor V°
with shape Atom Numberx Node Feature Dimension and E. Its output is a rank 2 tensor VX with
the same shape as V©; (iii) a dense network H (V) whose output is the chemical shifts. The
architecture is shown in Figure [2| Hyperparameters were optimized on a 20/80 validation/train split
of the ShiftX training dataset. The hyperparamers were layer number (1-6 explored), Node/Edge
feature dimensions (16-256, 1-32 respectively), L2 regularization[44], dropout[45], residue[46], and
the use of Schiitt et al. [23]] continuous radial basis convolutions on distance (or distance binning),
choice of loss, and the use of non-linear activation in final layers. L2 regularization and dropout
were found to be comparable to early-stopping on validation, so early-stop was used instead. Model
training was found to diverge without residue connections, which others have seen[47]]. Final layer
numbers are K = 4, L = 3, J = 3. The neighbor (F (EO)) feature dimension is 4 and atom feature
dimension is 256. Embeddings are used for inputs. Edges use a 1D embedding for type and distance
was tiled 31 times to make a 32 size input. Binning these distances seemed to have negligible affect on
performance. The atom element identities were converted to a tensor with 256 dimension embedding
look-up.

F(E®) = E uses ReLU activation[48]] except in the last layer, where tanh is used. We use the general
graph neural network equations from Battaglia et al. [29] to define our message passing update
function G¥(V¥~1 E) = V¥, where k indicates the kth MP layer. We first compute an intermediate
edge message based on the edge feature vector and node feature vector of the sender (¢°):

;= esijWkVZ;l (1)
where v, ; is the node feature vector of the jth neighbor of node i, e, ; is the edge feature vector of
the edge between node 7 and its jth neighbor. s; means message senders to node 7. W is the weight
matrix in the kth MP layer. The edge aggregation function p¢—" defines how to aggregate the edges
whose receiver is node i:

&' => e )
J

The node update function ¢ gives the new output feature vectors using the aggregated message from
Equation 2

vf =o(&') + Vf_l 3)

where o is the ReLU activation function. The addition of v; is a residue connection. v/ defines the
new node features which are the output of the message passing layers. Our choice of message passing
and lack of node update function (e.g,. GRUs in Gilmer et al. [49]) makes it one of the simplest
message passing variants.

H(V¥) uses a tanh in the second to last layer and the last layer used linear activation and output
dimension Z. Z is the number of unique elements in the dataset. Both F and H had bias.

Output chemical shifts § are computed as

8 =H(V)12(VO)5 + fi @)
where 17(V?) is a one-hot indicator for atom element with Z columns, §, ji are Z pre-computed
standard deviation and means of the refDB chemical shifts for each element. This chosen done to

make labels be approximately from —1 to 1 for training. This also has the effect of making any
chemical shift for a non-trained element (e.g., N) be 0.

The loss function is combined correlation and root mean squared deviation (RMSD):

Cov(y, §
L=%Z<yi—gi)2+1—M )

Oy,0y

where v = 0.001 for models trained on H only and 0.01 for models trained on all data. Training on
correlation in addition to RMSD was found to improve model correlation. The +1 is to prevent loss
from being negative and has no effect on gradients.



4 Training

Training was done in the TensorFlow framework[50]. Variables were initialized with the Glo-
rot initializer[51] and optimized with Adam optimizer[52] with a learning rate schedule of
[1073,1073,107%,107°[107*,107,1075|10~5] where | indicates a switch to a new dataset, except
the last which was joint training (see below). Early stopping with patience 5 was done for training.
The first dataset was trained with 5 epochs, the second with 50, and the third was combined with the
second for final training again with 50 epochs. The second and third dataset when combined have
large class imbalance so rejection sampling was used at the residue level where metabolites were
counted as a residue. Therefore, each amino acid and metabolites were seen with equal probability.
Each epoch was one complete iteration through the dataset. Batch size was 16 fragments (16 x 256
atoms). Training and inference were found to take about 0.0015 seconds per fragment (5.7 us per
shift) with the full model on a single Tesla V100 GPU. Timing was averaged on the SHIFTX dataset
(21,878 fragments) with loading times excluded.

5 GNN Results

Unless indicated, models were trained only on H chemical shifts for assessing features and training
curves. Training on all types requires the metabolome dataset and more complex joint training with
rejection sampling. A log-log training curve is shown in Figure [3| which shows H* accuracy on the
SHIFTX test dataset as a function of amount of training data. 100% here means all trainnig data
exlcuding validation. The SHIFTX dataset is about one tenth the size of RefDB dataset but can
provide nearly the same accuracy as shown (0.29 vs 0.26 RMSD). The RefDB dataset and SHIFTX
dataset contain the same proteins, but the SHIFTX dataset are more carefully processed. This shows
more careful processing of data is more important than number of structures.

The final model performance with all training data is shown in Table |I| Comparisons were done
using the SHIFTX+ webservel{ﬂ and the latest implementation of CS2Backbone in Plumed[40]. We
also include the reported performance of SHIFTX+ on their website that had better performance,
which could be because in our training and comparisons we did not set pH and temperatures and
instead used pH = 5, temperature = 298K. Our rationale for this decision was that we wanted a model
whose input is only molecular structure, and not experimental details such as buffer, pH, temperature
etc. Thus we compared to other models with the same restriction. Overall both the model with H
shift only and all elements perform comparably with existing methods but the GNN is not state of
the art. The advantage of our model is the efficiency and ability to input any molecule. Table[I]also
shows the effect of changing parameter number. There seems to be a sharp transition at the million
parameters, meaning models that are much smaller can be used for intermediate accuracy. Some
of the major choices of architecture design are also shown: including using dropout (in F, G, H),
example weighting by class (amino acid), and without non-linear activation. The label variance is
computed by comparing repeat measurements of the same protein structure in the RefDB dataset
and should be taken as the upper-limit beyond which experimental error is more important. This
non-linear scaling of accuracy with parameter number has been previously observed in GNNs[53]].

Figure 4] shows the effect of input features on the model. Model performance is good with a normal
molecular graph GNN (No Distances) where the input is only which atoms are near and which are
covalently bonded. Knowing the distance provides a small improvement in accuracy. Knowing which
atoms are spatially near provides a larger improvement, as shown in the Only Chemical Bonded
model. None of the models are close to the Label Variance, which is the upper-bound of what is
possible.

6 Multitype Model

After training on all element types and with metabolome dataset, model accuracy decreased slightly
(Table E]) However, the model has the desired features as shown in Figure E} It is able to model C,
N, and H chemical shifts with good correlation and good RMSDs (N: 2.982, C: 1.652, 0.368). The
correlation on the important H* is 0.844 vs 0.878 in the H model. Including metabolome dataset into
training gives a 0.872 correlation on the withheld 20% test (74 molecules). No validation was used

Thitp://shiftx2.ca/
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Figure 3: A log-log plot of training root mean squared deviation of labels with model predicted
chemical shift of H* as a function of elements in dataset. 100% means all data excluding validation
and test data is provided. The number of RefDB dataset examples is 131,015 (716,164 shifts) and
SHIFTX dataset is 21,878 examples (88,392 shifts).
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Figure 4: Parity plots comparing edge features in the GNN. No Distances means that non-bonded
neighbors are included, but with no distances. Only Chemical Bonded means distance is included but
only neighbors directly covalently bonded with an atom are included. Label Variance is the variation
between repeat measured NMR chemical shifts in the RefDB dataset[31]] and should be taken as the
upper-limit beyond which experimental errors are more significant than model fit.



H RMSD Hr H*RMSD H®r Parameter Number

Label Variance 0.176  0.965 0.138 0.967
Model (H) 0.459 0.781 0.264 0.878 1,185,437
Model (all) 0.527 0.718 0.293 0.844 1,185,437
Medium 0.511 0.712 0.290 0.848 297,181
Small 0.501 0.726 0.288 0.849 42,123
No RefDB Data 0.514 0.711 0.306 0.838 1,185,437
No Non-linearity 0.594 0.580 0.338 0.802 1,185,437
Weighted 0.471 0.766 0.274 0.865 1,185,437
SHIFTX+ 0.455 0.787 0.248 0.890
SHIFTX+* 0.378 0.836 0.197 0.932
CS2Backbone 0.716 0.418 0.417 0.708

Table 1: A comparison of the GNN presented here, other similar NMR models, and how model size
affects performance. *Reported by SHIFTX+ developers, which includes temperature and pH effects.
All others were computed independently in this work.
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Figure 5: Parity plots for the multitype model, which can treat C, N, H atoms and organic molecules.
Multitype all is the combined plot for C, N, and H in test proteins. Multitype Atom H* shows the
performance of this model on the important H* atom type. Metabolites is the model performance on
metabolites[33]].

for this data because hyperparameters were not tuned. Training on only metabolome dataset gives
0.92 correlation on withheld data and could be taken as an approximate upper-bound because the
ratio of trainable parameters (1 million) to data (369) is extreme.

Figure [6]shows phenomenological validation of the GNN model on two untrained properties: sen-
sitivity to secondary structure and chemical shift in hydrogen bonding. The left panel shows the
average predicted chemical shifts of each amino acid and secondary structure combination. As
expected based on model performance, it does well at predicting the effect of secondary structure on
chemical shift. Disagreement is seen on less frequently observed combinations like cystein S-sheets
and Tryptophan. Most comparable models like ProShift or ShiftX [34} 35 [32] have secondary
structure (or dihedral angles) as inputs for computing chemical shifts. The end-to-end training of
the GNN captures this effect. The results are consistent with previous studies[54-56] which showed
downfield shift of H* § for 8-sheet and upfield shift for a-helix. The right panel shows the effect
of breaking a salt bridge (ionic hydrogen bond) between an arginine and glutamic acid on the H¢
chemical shift. This atom was chosen because it is observable in solution NMR. White et al. [57]]
computed the chemical shift change to be 0.26 A¢d ppm for breaking this hydrogen bond based on
single-amino acid mixture NMR. The molecular graph was fixed here to avoid effects of neighbor
lists changing. The model gets a similar upfield shift and thus shows it could be used to model
protein-protein interfaces where side-chain — side-chain interactions are critical. It is also consistent
with previous reports [58],159] where an increasing strength of hydrogen bond was associated with
greater deshielding and subsequent downfield shift of H* §.
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Figure 6: The model performance on secondary structure and inter-molecular interactions. Left
panel shows the effects of secondary structure on o H §. Each colored point is the average predicted
across test data for amino acid/secondary structure combination. Vertical lines indicate uncertainty.
Horizontal line indicates true average from data. Right panel shows the downfield shift of protons
participating in a salt bridge (ionic hydrogen bond) between an arginine and glutamic amino acid
on separate chains. Experimental data is from White et al. [57] indicates relative difference in
chemical shift of the NH* proton between an amidated/acetylated ARG — GLU mixed solution vs
amidated/acetylated ARG alone.

7 Discussion

The GNN is able to compute chemical shifts for arbitrary molecules, be sensitive to both covalent
and non-bonded interactions, parse a million chemical shifts in 5 seconds, and is differentiable with
respect to pairwise distances. Model accuracy is near state of the art performance. There is a trade-off
between the chemical elements to train for and model accuracy, leaving an unanswered question of if
more trainable parameters are required. Training is complex, because there are three datasets and
they are of varying quality and sizes. Effort should be invested in better quality protein structure data.
Finally, there is a large number of message passing choices and more exploration could be done.

8 Conclusion

This work presents a new class of chemical shift predictors that requires no a priori knowledge about
what features affect chemical shift. The GNN input is only the underlying molecular graph and
elements and requires no details about amino acids, protein secondary structure or other features.
The GNN is close to state of the art in performance and able to take arbitrary input molecules,
including organic molecules. The model is highly-efficient and differentiable, making it possible
to use in molecular simulation. Important physical properties also arise purely from training:
[B-sheets formation causes downfield shifts and breaking salt bridges causes upfield shifts. This
work opens a new direction for connecting NMR experiments to molecular structure via deep learning.

All code available at https://github. com/whitead/graphnmr
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10 Impact Statement

Nuclear magnetic resonance (NMR) chemical shifts are very sensitive to conformational changes in
molecules [60] and give detailed information about the neighborhood of atoms in a molecule. This
makes NMR an effective tool for studying the structure and dynamics of proteins [61}[62]] and other
biomolecules [63]. Rigorous studies on the structure and dynamics of biomolecules are imperative for
the development of functional biomaterials and for understanding disease progression mechanisms to
develop suitable cures. Specifically, the NMR has been instrumental in understanding intrinsically
disordered proteins (IDPs) [64]. IDPs are dynamic proteins exhibiting a wide range of conformations
and have been linked to various diseases [65]] like the Alzheimer’s disease.

An accurate NMR chemical shift prediction model is necessary for inferring protein structure from
NMR measurements. Our work provides a new versatile prediction model with comparable accuracy
and computational efficiency, which is a significant improvement. Our GNN-based NMR chemical
shift predictor exceeds the limitations of existing models in following aspects:

e Our model is both differentiable and highly accurate, which enables the compatibility with
gradient methods.

e Our model is sensitive to spatial structure and not limited to single molecule input, making
it possible to identify secondary structure of protein and multiple interacting types of
macromolecules.

e The input of our model is not restricted to protein molecules and can be used on other
organic macromolecules.

Our model could be applied to a wide range of tasks, including simply predicting NMR chemical
shifts for given protein molecules and capturing important phenomena like hydrogen bonding induced
downfield shift between multiple proteins and secondary structure effects. Our model can also be
used together with gradient methods to solve structures. The strong versatility of our model provides
future researchers with a robust tool with which they don’t need to worry about the trade off between
accuracy and differentiablility.
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