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Abstract

The prediction of physicochemical properties from molecular structures is a crucial
task for artificial intelligence aided molecular design. A growing number of Graph
Neural Networks (GNNs) have been proposed to address this challenge. These
models improve their expressive power by incorporating auxiliary information in
molecules while inevitably increase their computational complexity. In this work,
we aim to design a GNN which is both powerful and efficient for molecule struc-
tures. To achieve such goal, we propose a molecular mechanics-driven approach
by first representing each molecule as a two-layer multiplex graph, where one
layer contains only local connections that mainly capture the covalent interac-
tions and another layer contains global connections that can simulate non-covalent
interactions. Then for each layer, a corresponding message passing module is pro-
posed to balance the trade-off of expression power and computational complexity.
Based on these two modules, we build Multiplex Molecular Graph Neural Network
(MXMNet). When validated by the QM9 dataset for small molecules and PDBBind
dataset for large protein-ligand complexes, MXMNet achieves superior results to
the existing state-of-the-art models under restricted resources. The code is available
online: https://github.com/zetayue/MXMNet.

1 Introduction

Human society benefits greatly from the discovery and design of new molecules with desired
properties, from COVID-19 vaccines to solar cells. Artificial intelligence (AI) plays an increasingly
important role in accelerating the molecular discovery process. One of the crucial tasks in AI-assisted
molecular design is to predict the physicochemical properties of molecules from their structures. In
recent years, many machine learning techniques have been proposed for the representation learning
of molecules to reduce the computational cost involved in quantum chemistry calculations (DFT) and
molecular dynamics simulations (MD) [1]. Among those methods, Graph Neural Networks (GNNs)
have shown superior performance by treating the molecule as a graph and performing message
passing scheme on it [2].

To better model the interactions in molecules and increase the expressive power of methods, previous
GNNs have adopted auxiliary information such as chemical properties, pairwise distances between
atoms, and angular information [3, 4, 5, 6, 7, 8, 9]. However, adopting such information in GNNs
will inevitably increase the computational complexity. For example, when passing messages on a
molecular graph that has N nodes with an average of k nearest neighbors for each node, O(Nk2)
or O(N3) messages are required in the worst case for the previous state-of-the-art GNNs [8, 9] to
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Figure 1: std. MAE vs. memory consumption on QM9 dataset [11]. When compared with SchNet [6],
PhysNet [7] and DimeNet [8], MXMNet gets the state-of-the-art performance and is memory-efficient.

capture the angular information. With restricted memory resources, those GNNs could exhibit limited
expressive power or even fail when applied to macromolecules like proteins or RNAs.

To address the limitation, we propose a novel GNN that is both powerful and efficient. Inspired
by molecular mechanics methods [10], we use the angular information to model only the local
connections to avoid using expensive computations on all connections. Besides, we divide the
molecular interactions into two categories: local and global. Then a two-layer multiplex graph
G = {Gl, Gg} is constructed for a molecule. In G, the local layer Gl only contains the local
connections that mainly capture covalent interactions, and the global layer Gg contains the global
connections that cover non-covalent interactions. With the multiplex molecular graphs, we then
design Multiplex Molecular (MXM) module that contains a novel angle-aware message passing
operated on Gl and an efficient message passing operated on Gg. Note that the MXM module
reduces the computational complexity by avoiding capturing the angular information in nonlocal
interactions. Finally, we construct the Multiplex Molecular Graph Neural Network (MXMNet) for
the representation learning of molecules.

To empirically evaluate the power and efficiency of MXMNet, we conduct experiments on a small
molecules dataset QM9 [11] and a protein-ligand complexes dataset PDBBind [12]. On both datasets,
our model can outperform the baseline models. Regarding the efficiency, our model requires signifi-
cantly less memory than the previous state-of-the-art model [8] as shown in Figure 1 and achieves a
training speedup of 260%. The main contributions of our work are as follows:

• We propose a molecular mechanics-driven approach to represent the molecule by using a
two-layer multiplex graph, where one layer contains local connections and another layer
contains global connections.

• We propose Multiplex Molecular (MXM) module which performs the message passing on
the whole multiplex graph. The MXM module captures the global pairwise distances and
local angles to be both powerful and efficient.

• We propose Multiplex Molecular Graph Neural Network (MXMNet) based on the MXM
module. Experiments on benchmark datasets validate that MXMNet achieves state-of-the-art
performance and is efficient.

2 Related Work

GNNs for Molecules. To learn the representations of graph-structured data using neural networks,
Graph Neural Networks (GNNs) have been proposed [3, 13, 14] and attracted growing interests. Due
to the superior performance achieved by GNNs in various tasks, researchers began to apply GNNs
for predicting various properties of molecules. Initial works treat the chemical bonds in molecules
as edges and atoms as nodes to create graphs for molecules [3, 4, 5]. These GNNs also integrate
many hand-picked chemical features to improve performance. However, they do not take account of
the 3-dimensional structure of molecules, which is critical for many physiochemical properties of
molecules. Thus later works [15, 6, 16, 7] turn to take the atomic positions into consideration and use
interatomic distances to create the edges as well as edge features between atoms. Usually, a cutoff
distance is used to find the neighbors in molecules instead of creating a complete graph to reduce
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the computational complexity and overfitting. However, the setting of cutoff sometimes can lead the
GNNs to fail to distinguish certain molecules [8]. To solve this issue, angular information is further
used in GNNs to achieve higher expressive power [8, 9]. However, those angle-aware GNNs have
significantly higher time and space complexity than the previous works. They are not scalable to
macromolecules or large-batch learning.

Multiplex Graph. The multiplex graph (a.k.a multi-view graph) consists of multiple types of edges
among a set of nodes. Informally, it can be considered as a collection of graphs, where each type of
edges with the same set of nodes forms a graph or a layer. To get the representation of each node,
both intra-layer relationships and cross-layer relationships have to be addressed properly. In practice,
various methods have been proposed to learn the embedding of the multiplex graph [17, 18, 19, 20, 21]
and the multiplex graph can be applied in many fields [22, 23, 24]. For the representation learning on
molecules, previous work [25] implicitly represents molecular graphs as multiplex graphs and passes
messages according to the edge types. In this work, we explicitly represent molecules as multiplex
graphs based on the geometric information in molecules. Moreover, we propose different message
passing schemes for different layers in the multiplex graph.

3 Preliminaries

In this section, we will introduce the preliminaries about our work. We first introduce the main
notations used in this paper. Let G = (V,E) be a graph with N = |V | nodes and M = |E|
edges. The nearest neighbors of node i are defined as N (i) = {j|d(i, j) = 1}, where d(i, j) is the
shortest distance between node i and j. The average number of the nearest neighbors of each node is
k = 2M/N . In the later formulations, we will use hi as the embedding of node i, eji as the edge
embedding between node i and j, which embeds the pairwise distance, mji as the message being
sent from node j to node i in the message passing scheme [5], MLP as the multi-layer perceptron, ‖
as the concatenation operation, � as the element wise production and W as the weight matrix. Next
we provide the definition of a multiplex graph:

Definition 1. Multiplex Graph. A multiplex graph can be defined as an L + 1-tuple G =
(V,E1, . . . , EL) where V is the set of nodes and for each l ∈ {1, 2, . . . , L}, El is the set of edges in
type l that between pairs of nodes in V . By defining the graph Gl = (V,El) which is also called a
plex or a layer, the multiplex graph can be seen as the set of graphs G = {G1, G2, ..., GL}.

Now we introduce the message passing scheme [5] which is a general graph convolution used in
spatial-based GNNs [2]:

Definition 2. Message Passing. Given a graph G, the node feature of each node i is xi, and the
edge feature for each node pair j and i is eji. The message passing scheme iteratively updates the
node embedding h using the following functions:

mt
ji = fm(ht−1

i ,ht−1
j , eji), ht

i = fu(ht−1
i ,

∑
j∈N (i)

mt
ji),

where the superscript t denotes the t-step iteration, h0
i = xi, the fm and fu are learnable functions.

In recent works [8, 9], the message passing scheme has been modified to capture the angular
information in a 3D molecular graph G = (V,E) with N nodes and their Cartesian coordinates
r = {r1, . . . , rN}, where ri ∈ R3 is the position of node i. To analyze their computational
complexity, we start from the number of angles in G to be captured:

Theorem 1. Given a 3D molecular graph G, each pair of adjacent edges that share a common node
can define an angle in G. There are O(Nk2) angles in G, where N is the number of nodes and k is
the average number of nearest neighbors for each node.

The proof is straightforward: For each node in G, there is an average of k edges connected to it. Those
k edges can define (k(k − 1))/2 angles. Thus in total, we have O(Nk2) angles in G. To capture
those angles in message passing scheme, there is at least one message being used to contain each
angle in recent approaches [8, 9]. Thus the computational complexity of those models is at least
O(Nk2) for each graph in an operation.

Finally we present the problem investigated in this work:
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Figure 2: Illustration of our molecular mechanics-driven approach. (a) The molecular mechanics
(MM) methods. (b) The geometric information (GI) used in MM methods does not contain the
angles in nonlocal interactions. We further group the GI into Local GI and Global GI. (c) Given a
3D molecule, interaction graphs are constructed with different GI. We show an example of creating
edges around an orange node. (d) The resulting interaction graphs are used to build a multiplex
molecular graph G. (e) With G, we design message passing modules to update the node embeddings
hierarchically and efficiently.

Problem 1. Molecular Properties Prediction. Given a molecule with N atoms and their atomic
numbers Z = {Z1, . . . , ZN} and Cartesian coordinates r = {r1, . . . , rN}, the problem of molecu-
lar properties prediction is to predict the target property t ∈ R of the molecule. The regression goal
is to find a function f : {Z, r} → R. Sometimes with auxiliary chemical information Θ, the goal
function is f : {Z, r,Θ} → R.

4 Approach

In this section, we introduce our molecular mechanics-driven approach including the multiplex
molecular graphs, the Multiplex Molecular (MXM) module, and the Multiplex Molecular Graph
Neural Network (MXMNet).

4.1 Multiplex Molecular Graphs

In molecular mechanics methods [10], the molecular energy E is modeled as E = Elocal + Enonlocal
(see Figure 2(a)), where Elocal = Ebond + Eangle + Edihedral models the local, covalent interactions
including Ebond that depends on bond lengths, Eangle on bond angles, and Edihedral on the dihedral
angles. Enonlocal models the non-local, non-covalent interactions between atom pairs. When focusing
on the geometric information contained in the molecular mechanics method, we will find that the local
interactions capture the angles αlocal and the pairwise distances dlocal while the nonlocal interactions
only capture the pairwise distances dnonlocal (see Figure 2(b)). These inspire us to use the angular
information to model only the local interactions instead of all interactions in our model to reduce the
computational complexity.

To achieve our goal, we first divide the geometric information (GI) in molecular mechanics methods
into two groups: Local GI that contains αlocal and dlocal, and Global GI that contains dlocal and
dnonlocal (see Figure 2(b)). Given a 3D molecule, we then construct the corresponding interaction
graphs that contain different GI (see Figure 2(c)). For the local GI, we can create edges by using
either chemical bonds or finding the neighbors of each node within a small cutoff distance depending
on the task being investigated. For the global GI, we create the edges by defining the neighbors of
each node within a relatively large cutoff distance. With the interaction graphs, we treat them as
layers to build a multiplex molecular graph G = {Gl, Gg}, which consists of a local layer Gl and a
global layer Gg (see Figure 2(d)). The resulting G will be used as the input of our model.
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Figure 3: Overview of the architecture of the MXM module and the MXMNet. In the illustrations, σ
denotes the non-linear transformation, � denotes the input for the layer.

4.2 Multiplex Molecular (MXM) Module

With the multiplex molecular graph G, we propose Multiplex Molecular (MXM) module that uses
different rules to update the node embeddings based on the different edges in G (see Figure 2(e)).
For Gg , we propose the global layer message passing. For Gl, we propose the local layer message
passing. To transfer the information between different layers, we use a cross layer mapping. These
operations will be introduced as follows in detail.

Global Layer Message Passing Module. In this module, the message passing is performed on the
global layer, which contains both local and non-local connections. We propose a message passing
module that can capture the pairwise distances based on the message passing defined in Definition 2.
Note that the message passing in Definition 2 can only take the one-hop neighbors of the central node
in the aggregation per iteration. Inspired by previous works that demonstrate the power of addressing
high-order neighbors in GNNs [26, 27, 28], we here propose a message passing that captures up to
the two-hop neighbors per iteration. A straightforward way to achieve the goal would be directly
aggregating all two-hop neighbors. However, this would require O(Nk2) messages on the graph per
iteration. Instead, we perform the one-hop based message passing twice in each iteration to address
the two-hop neighbors. The resulting operation will only need O(2Nk) messages in this way.

As illustrated in Figure 3(b), our global layer message passing module consists of two identical
message passing operations that can capture the pairwise distance information e. Each message
passing operation is formulated as follows:

mji = MLP([hinput
j ‖hinput

i ‖ eji])� (ejiW ), (1)

houtput
i = hinput

i +
∑

j∈N (i)
mji, (2)

where i, j ∈ Gglobal, the superscripts denote the state of h in the operation. In our global layer
message passing, an update function fu is used between the two message passing operations. We
define fu using multiple residual modules (see Figure 3(d)). Each residual module consists of a
two-layer MLP and a skip connection (see Figure 3(e)).

Local Layer Message Passing Module. In this module that performs message passing on the local
layer, we will incorporate both the pairwise distance and angles associated with local interactions. In
practice, we propose a message passing that captures up to the two-hop neighbors per iteration. In
this way, the edges can define two kinds of angles: The two-hop angles that between the one-hop
edges and the two-hop edges (∠ij1k1, ∠ij1k2 in Figure 4). The one-hop angles that only between
the one-hop edges (∠j1ij2 and ∠j1ij3 in Figure 4). Our message passing can capture all of those
angles. While the previous work [8] only captures the two-hop angles.
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Figure 4: Illustration of Message Passing 1 and 2 used in the Local Layer Message Passing module.
(a) Message Passing 1 can capture the two-hop angles like ∠ij1k1 and ∠ij1k2 when updating mj1i.
(b) Message Passing 2 can capture the one-hop angles like ∠j1ij3 and ∠j1ij2 when updating mj1i.

In detail, we propose a 3-step message passing scheme to be the local layer message passing: Step 1
contains Message Passing 1 that captures the two-hop angles and related pairwise distances to update
edge-level embeddings {mji} (see Figure 4(a)). Step 2 contains Message Passing 2 that captures
the one-hop angles and related pairwise distances to further update {mji} (see Figure 4(b)). Step 3
finally aggregates {mji} to update the node-level embedding hi. These steps in the t-th iteration can
be formulated as follows:

Step 1: Message Passing 1

mt−1
kj = MLPkj([h

t−1
k ‖ht−1

j ‖ ekj ])� (ekjW e1)�MLPa1(akj,ji), (3)

mt−1
ji = MLPji([h

t−1
j ‖ht−1

i ‖ eji]) +
∑

k∈N (j)\{i}
mt−1

kj , (4)

Step 2: Message Passing 2

m
′t−1
j′i = MLPj′i(m

t−1
j′i )� (ej′iW e2)�MLPa2(aj′i,ji), (5)

m
′t−1
ji = MLP

′

ji(m
t−1
ji ) +

∑
j′∈N (i)\{j}

m
′t−1
j′i , (6)

Step 3: Aggregation and Update

ht
i = fu(

∑
j∈N (i)

m
′t−1
ji � (ejiW e3)), (7)

where i, j, k ∈ Glocal, akj,ji is the feature for angle αkj,ji = ∠hkhjhi. We define fu using the same
form as in the global layer message passing. These steps need O(2Nk2 +Nk) messages in total.

Figure 3(c) illustrates the architecture of the global layer message passing. Note that we also include
an Output module (see Figure 3(c) and (f)), which is used for producing the output when creating the
whole GNN model later.

Cross Layer Mapping. After having the message passing modules for the local and global layer,
we further use a cross layer mapping function fcross to address the connections between the same
nodes across different layers in a multiplex molecular graph (see Figure 2(d)).

The cross layer mapping function fcross takes either the node embeddings {hg} in the global layer or
the node embeddings {hl} in the local layer as input, and maps them to replace the node embeddings
in the other layer (see Figure 3(a)):

hl = fcross(hg) or hg = f ′cross(hl), (8)

where g ∈ Gglobal, l ∈ Glocal, the fcross and f ′cross are learnable functions. In practice, we use
multi-layer perceptrons to be fcross and f ′cross. Each of them needs O(N) messages being updated.

4.3 Multiplex Molecular Graph Neural Network (MXMNet)

With MXM module, we build Multiplex Molecular Graph Neural Network (MXMNet) for the
prediction of molecular properties as shown in Figure 3(g). In the Embedding module, the atomic
numbers Z are represented with randomly initialized, trainable embeddings to be the input node
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embeddings. In the RBF & SBF module, the Cartesian coordinates r of atoms are used to compute
the pairwise distances and angles. We use the basis functions proposed in [8] to construct the
representations of eRBF and aSBF . Then we stack MXM modules to perform message passings. In
each MXM module, we use an Output module to get the node-level output. The final prediction y is
computed by summing all outputs together among all nodes and all layers.

4.4 Expressive Power and Complexity of MXMNet

Expressive Power. We analyze the expressive power of MXMNet by focusing on the effect of
captured geometric information on representing molecular structures. Since MXMNet takes the
pairwise distance information in global connections and the angular information in local connections
into consideration, it is more powerful than the GNNs that only captures the pairwise distance
information [15, 6, 16, 7]. When compared with the GNNs that captures both the pairwise distance
information and angular information in global connections [8, 9], MXMNet theoretically has lower
expressive power due to the uncaptured angular information in nonlocal connections. However, note
that expressive power does not directly speak about the generalization ability of GNNs [29, 30],
our experiments will empirically show that MXMNet exhibits good generalization ability with
state-of-the-art performance.

Computational Complexity. To analyze the computational complexity, we focus on the time and
space complexity of message passing in MXMNet. We denote the cutoff distance when creating the
edges as dg and dl in Gg and Gl. The average number of the nearest neighbors per node is kg in
Gg and is kl in Gl. For 3D molecules, we have kg ∝ dg

3 and kl ∝ dl
3. As dg > dl, we know that

kg � kl. As discussed in previous sections, the message passing operations in our MXM module
requires the computation of O(2Nkg + 2Nkl

2 +Nkl + 2N) messages in total. Therefore, MXMNet
is much more efficient than the GNNs capturing angular information in global connections [8, 9],
which require O(Nkg

2) messages.

5 Experiments

In our experiments, we evaluate the generalization power as well as the efficiency of our MXMNet
on the QM9 dataset for predicting molecular properties and the PDBBind dataset for predicting
the protein-ligand binding affinities. Several state-of-the-art baseline models are also included for
comparisons.

5.1 Experimental Setup

QM9. The QM9 dataset is a widely used benchmark for the prediction of physical properties of
molecules in equilibrium [11]. It consists of around 130k small organic molecules with up to 9
heavy atoms (C, O, N, and F). The properties are computed using density functional theory (DFT)
calculations. Following [8], we randomly use 110000 molecules for training, 10000 for validation
and the rest for testing. We evaluate the mean absolute error (MAE) of the target properties. To create
the multiplex molecular graphs, we use the chemical bonds as the edges in the local layer, and a
cutoff distance to create the edges in the global layer.

PDBBind. PDBBind is a database of experimentally measured binding affinities for protein-ligand
complexes [12]. It contains detailed 3D structures and associated inhibition constants Ki for the
complexes. In our experiment, we use the PDBBind 2015 refined subset which contains roughly 4K
structures. In each complex, we exclude the protein residues that are more than 6Å from the ligand.
Besides, we remove all hydrogen atoms and use the remaining heavy atoms in the structure. The
resulting complexes contain around 200 atoms on average. In the experiment, we split the dataset
into training, validation, and testing sets by 8:1:1 and perform 10-fold cross-validation. The mean
absolute error (MAE) of the binding free energy and the Pearson correlation coefficient (R) of logKi

are reported. To create the multiplex molecular graphs, we use a cutoff distance of 2Å in the local
layer and 6Å in the global layer when defining the edges.

In our experiments, we use the following state-of-the-art models as baselines: SchNet [6], PhysNet [7],
MEGNet-full [16], Cormorant [31], MGCN [32] and DimeNet [8]. On QM9, we use the results
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Table 1: Comparison of MAEs of targets on QM9 for different models.

Target SchNet PhysNet MEGNet-f Cormorant MGCN DimeNet
MXMNet MXMNet MXMNet

BS=32 BS=128 BS=128
dg=5Å dg=5Å dg=10Å

µ (D) 0.021 0.0529 0.040 0.038 0.056 0.0286 0.0396 0.0382 0.0255
α(a30) 0.124 0.0615 0.083 0.085 0.030 0.0469 0.0447 0.0482 0.0465

εHOMO (meV) 47 32.9 38 34 42.1 27.8 24.7 23.0 22.8
εLUMO (meV) 39 24.7 31 38 57.4 19.7 19.7 19.5 18.9

∆ε (meV) 74 42.5 61 61 64.2 34.8 32.6 31.2 30.6〈
R2
〉

(a20) 0.158 0.765 0.265 0.961 0.11 0.331 0.512 0.506 0.088
ZPVE (meV) 1.616 1.39 1.40 2.027 1.12 1.29 1.15 1.16 1.19
U0 (meV) 12 8.15 9 22 12.9 8.02 5.90 6.10 6.59
U (meV) 12 8.34 10 21 14.4 7.89 5.94 6.09 6.64
H (meV) 12 8.42 10 21 16.2 8.11 6.09 6.21 6.67
G (meV) 13 9.40 10 20 14.6 8.98 7.17 7.30 7.81
cv( cal

molK ) 0.034 0.0280 0.030 0.026 0.038 0.0249 0.0224 0.0228 0.0233

std. MAE (% ) 1.78 1.37 1.57 1.61 1.89 1.05 1.06 1.02 0.93

Table 2: Comparison of mean std. MAEs of ablations that only contain parts of the MXM module.
MXMNet cannot achieve the stat-of-the-art performance without any part of the MXM module.

Ablation std. MAE
std. MAE of MXMNet

Only Global Layer
Message Passing

One MP operation 116%
Two MP operations 110%

Only Local Layer
Message Passing

Step 1, 3 266%
Step 2, 3 244%

Step 1, 2, 3 224%

reported in the original works for the baselines. On PDBBind, we conduct the experiments based on
the corresponding implementations. All of the experiments are done on an NVIDIA Tesla V100 GPU
(32 GB). More details of the parameter settings and training setup are included in the appendix.

5.2 Results on QM9

On the QM9 dataset, we test the performance of MXMNet under different configurations by changing
the batch size BS and the cutoff distance dg used in the global layer. As reported in Table 1, MXMNet
variants get better results than the baselines on 9 targets. We also compute the mean standardized
MAE (std. MAE) as used in [8] to evaluate the overall performance of the models. MXMNet
(BS=128, dg = 10Å) has the lowest std. MAE among all models and decreases the mean std. MAE
by 13% compared to the previous best model DimeNet. The results clearly demonstrate the excellent
generalization power of MXMNet.

Ablation Study. By comparing the results between MXMNet (BS=32, dg = 5Å) and MXMNet
(BS=128, dg = 5Å), we find that the effect of batch size on the performance is small. With a relatively
large batch size (128), the overall performance is slightly better than using a small batch size (32).
Moreover, we can benefit from the large batch to achieve faster training.

To investigate the effect of dg on the performance, we compare the results of the MXMNet variants
that using different dg in Table 1. When using dg = 5Å, MXMNet can get better results than using
dg = 10Å on the targets ZPVE, U0, U , H , G and cv . This suggests that those properties benefit more
from modeling a limited range of interactions rather than simply increasing the interaction range.
While for the targets µ, εHOMO, εLUMO, ∆ε and

〈
R2
〉
, the performance of MXMNet can be improved

by using a larger dg = 10Å that helps to capture longer range interactions. Therefore, in practice, it
is recommended to use different dg for predicting different properties.

To further test whether our proposed two message passing modules (local layer and global layer) will
both contribute to the success of MXMNet, we conduct experiments by using only one of the two
modules or even parts of a module. Table 2 shows that all the ablations will decrease the performance
of MXMNet. These validate that both of the two message passing modules contribute to the power of
MXMNet. Besides, when only using the global layer message passing module, the ablation with only
one message passing performs worse than the ablation with two message passings, which shows the

8



Table 3: Results of the Pearson correlation coefficient R and MAEs of different models on PDBBind.
’-’ denotes that the model raises out-of-memory issue.

Model Pearson R MAE

SchNet 0.601±0.037 1.892±0.071
PhysNet 0.614±0.034 1.881±0.065
DimeNet OOM OOM
MXMNet 0.664 ± 0.024 1.733 ± 0.089

effectiveness of capturing the two-hop neighbors. When only using the local layer message passing
module, the mean std. MAE increases significantly compared to the original MXMNet, suggesting
that the local connections are not adequate for the task. The results also validate the necessity to
capture both one-hop angles and two-hop angles: The ablations with either one kind of them perform
worse than the ablation with all of them.

Efficiency Evaluation. To evaluate the space and time efficiency of MXMNet, we first compare the
memory consumption during the training on QM9 for SchNet, PhysNet, DimeNet, and MXMNet. For
the baselines, the model configurations are the same as those in their original papers. As illustrated in
Figure 1, all of the three MXMNet variants use a much smaller memory than DimeNet. For SchNet
and PhysNet that consume less memory than MXMNet, they perform worse than MXMNet with
higher mean std. MAEs. Then for time efficiency, we focus on the total training time. Note that the
total training time is affected by all operations in the models and different models need different
computational time for passing one message. Thus a smaller number of messages being passed in
a GNN does not guarantee a shorter training time. Instead, we find that the batch size significantly
affects the training time: MXMNet can benefit from large batch training with BS=128 to achieve a
speedup of the training to 2.6× against DimeNet that can only use BS=32 on our GPU.

5.3 Results on PDBBind

On the PDBBind dataset with much larger molecules than those in QM9, the training of MXMNet
is still able to be performed on our GPU. With the same model configuration, DimeNet will raise
the out-of-memory error. As shown in Table 3, when compared with SchNet and PhysNet that do
not have the memory issue, MXMNet outperforms them significantly with a higher Pearson R and a
lower MAE. Those results validate that our model is both powerful and memory-efficient to be used
for macromolecules.

6 Conclusion

In this paper, we propose a powerful and efficient GNN, MXMNet, for predicting the properties of
molecules. Our model can significantly improve both expressive power and memory efficiency of
GNNs for molecules. The novelty of MXMNet lies in its representation of molecules as a multiplex
graph that is rooted in molecular mechanics. Experiments on QM9 and PDBBind datasets have
successfully demonstrated the power and efficiency of MXMNet compared with the state-of-the-art
baselines. In future work, it would be interesting to address the dihedral angles in 3D molecules. It is
also promising to use MXMNet as a general tool to learn the representations of molecules in more
tasks. Moreover, since molecules can have multiple conformations. It remains unclear how these
conformations affect our model and other related GNNs.
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A Appendix

A.1 Dataset Sources

QM9. For the QM9 dataset, we use the source1 provided by [1]. Following the previous works [2, 3,
4, 5, 6], we process the QM9 dataset by removing about 3k molecules that fail a geometric consistency
check or are difficult to converge [7]. For the properties U0, U , H , and G, only the atomization
energies are used by subtracting the atomic reference energies as in [8]. For the property ∆ε, we
follow the same way as the DFT calculation and predict it by calculating εLUMO − εHOMO.

PDBBind. For the PDBBind dataset, we use the version2 that is included in the MoleculeNet
benchmark for molecular machine learning [9]. We use logKi as the target property being predicted,
which is proportional to the binding free energy.

A.2 Baseline Sources

For the baselines used in the experiment on PDBBind, we find their codes provided by the original
papers are based on different frameworks: SchNet [3] is based on PyTorch [10], while PhysNet [4]
and DimeNet [8] are based on Tensorflow [11]. To make fair comparisons and exclude the differences
brought by different frameworks, we adopt the implementations of SchNet3 and DimeNet4 provided
by the widely used PyTorch Geometric library [12] for graph representation learning. Since DimeNet
is built based on PhysNet, by comparing their original implementations, we create the implementation
of PhysNet based on4 by changing the corresponding modules. Besides, the code of our MXMNet is
also built based on4.

A.3 Implementation Details

For the multi-layer perceptrons (MLPs) used in our MXMNet, they all have 2 layers to take advantage
of the approximation capability of MLP [13]. For all activation functions, we use the self-gated Swish
activation function [14]. For the basis functions eRBF and aSBF , we use NSHBF = 7, NSRBF = 6
and NRBF = 16. To initialize all learnable parameters, we use the default settings used in PyTorch
without assigning specific initializations except the initialization for the input node embeddings h(0)

g

in the global layer: h(0)
g are initialized with random values uniformly distributed between −

√
3 and√

3.

In our experiment on QM9, we use the single-target training following [8] by using a separate model
for each target instead of training a single shared model for all targets. The models are optimized
by minimizing the mean absolute error (MAE) loss using the Adam optimizer [15]. We use a linear
learning rate warm-up over 1 epoch and an exponential decay with ratio 0.1 every 600 epochs. The
model parameter values for validation and test are kept using an exponential moving average with a
decay rate of 0.999. To prevent overfitting, we use early stopping on the validation loss. Besides, we
repeat our runs 3 times for each MXMNet variant following [16].

In our experiment on PDBBind, for each model being investigated, we create three weight-sharing,
replica networks, one each for predicting the target G of complex, protein pocket, and ligand
following [17]. The final target is computed by ∆Gcomplex = Gcomplex − Gpocket − Gligand. The full
model is trained by minimizing the mean squared error (MSE) loss between ∆Gcomplex and the true
values using the Adam optimizer [15]. The learning rate is dropped by a factor of 0.2 every 50 epoch.
Moreover, we perform 10-fold cross-validation and repeat the experiments 5 times for each model.
The validation losses are used for early stopping.

In Table 1, we list the most important hyperparameters used in our experiments.

1https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/
978904

2http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/pdbbind_v2015.tar.gz
3https://github.com/rusty1s/pytorch_geometric/blob/73cfaf7e09/examples/qm9_schnet.py
4https://github.com/rusty1s/pytorch_geometric/blob/73cfaf7e09/examples/qm9_dimenet.py

1

https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
https://figshare.com/collections/Quantum_chemistry_structures_and_properties_of_134_kilo_molecules/978904
http://deepchem.io.s3-website-us-west-1.amazonaws.com/datasets/pdbbind_v2015.tar.gz
https://github.com/rusty1s/pytorch_geometric/blob/73cfaf7e09/examples/qm9_schnet.py
https://github.com/rusty1s/pytorch_geometric/blob/73cfaf7e09/examples/qm9_dimenet.py


Table 1: List of hyperparameters used in our experiments on QM9 and PDBBind.

Hyperparameters Value / Range
QM9 PDBBind

Batch Size 32, 128 32
Hidden Dim. 128 128
Initial Learning Rate 1e-3, 1e-4 1e-3, 5e-4
Number of Layers 6 2, 3
Max. Number of Epochs 900 250
Dropout 0 0
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