Learning a Continuous Representation of 3D
Molecular Structures with Deep Generative Models

Matthew Ragoza* Tomohide Masuda* David Ryan Koes
Comp. & Systems Biology Comp. & Systems Biology Comp. & Systems Biology
University of Pittsburgh University of Pittsburgh University of Pittsburgh
Pittsburgh, PA 15213 Pittsburgh, PA 15213 Pittsburgh, PA 15213
mtr220pitt.edu tmasuda@pitt.edu dkoes@pitt.edu
Abstract

Machine learning in drug discovery has been focused on virtual screening of
molecular libraries using discriminative models. Generative models are an entirely
different approach that learn to represent and optimize molecules in a continuous
latent space. These methods have been increasingly successful at generating two
dimensional molecules as SMILES strings and molecular graphs. In this work, we
describe deep generative models of three dimensional molecular structures using
atomic density grids and a novel fitting algorithm for converting continuous grids to
discrete molecular structures. Our models jointly represent drug-like molecules and
their conformations in a latent space that can be explored through interpolation. We
are also able to sample diverse sets of molecules based on a given input compound
and increase the probability of creating valid, drug-like molecules.

1 Introduction

The goal of drug discovery is to find novel molecules that bind to target proteins of pharmacological
interest. This involves a long, costly pipeline in which a massive chemical space is repeatedly
filtered into the subset of compounds most likely to be active. Computational methods promise to
streamline this process through rapid scoring and ranking of large libraries of molecules in silico prior
to confirming their activity with experimental assays [1]. This approach, called virtual screening, has
established a significant presence in the modern drug development toolkit.

Despite its utility, virtual screening has inherent limitations. Though faster and cheaper than high-
throughput experimental screening, it cannot propose compounds absent from existing libraries or
suggest changes to input compounds that improve their desired properties. The need to explicitly
enumerate molecules for screening means that even sub-linear time virtual screening algorithms [2]
cannot cover the entirety of chemical space.

An alternative class of machine learning methods called generative models could overcome these
limitations. Virtual screening falls within the category of discriminative models, which are designed to
predict some desired property, such as binding affinity, conditioned on the input data. In a generative
modeling formulation, the goal instead becomes learning to directly sample from the underlying
distribution of drug-like molecules in order to yield novel active compounds.

In computational drug design, generative models have thus far been used to map from two-dimensional
molecules to a continuous latent space that is then explored to produce molecules with desired
properties. Here we describe for the first time a deep learning model that represents and generates
constitutionally diverse three-dimensional molecular structures. We encode 3D molecules to a latent
space using atomic density grids as input and decode them in the same format. Then we apply a
novel optimization algorithm to fit 3D chemical structures to generated atomic densities and reliably
produce valid molecules.
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2 Related Work

In the last decade, major advances in computer vision [3| 4] have sparked a surge of interest in deep
learning for drug discovery [5]. Researchers have applied deep learning to binding discrimination for
virtual screening [6} (7] and pose ranking for molecular docking [7]] by using atomic density grids to
treat classification and regression of molecular structures as analogous to three-dimensional image
recognition. Other work has trained deep neural networks for binding affinity prediction [8| 9] and
quantum energy estimation [[10] using atomic coordinate-based input representations.

Deep learning for generative modeling generally falls into two frameworks. In a variational autoen-
coder (VAE) [L1]], an encoder and decoder network are trained to map between the input space and
a set of latent random variables that follow a predetermined distribution. This allows the model to
sample from the prior and create novel data samples. Generative adversarial networks (GANSs) [[12]
are a complementary approach [13]] that concurrently train a discriminative network to distinguish
real and fake data, and a generative network to create samples that the discriminator classifies as real.
GANSs have proven successful at learning to generate novel image-like data. [14]

The first efforts applying deep generative models to molecule generation 15} [16] used the SMILES
string format [17]. Treating chemicals as linguistic sequences allows the use of recurrent networks
that have been effective at modeling natural language. However, similar molecules can have very
different SMILES strings due to their lack of permutation invariance, and invalid SMILES strings
can be produced unless grammatical constraints are imposed on the model [[18, [19] or valid strings
are rewarded through reinforcement learning [20]. Lastly, SMILES strings only describe molecules
in terms of their connectivity, so they cannot represent their 3D spatial conformations.

Others have leveraged graph convolutions [21] to train deep generative models on molecular graphs
[22, 23] 24) 25]. These more naturally capture many invariances present in chemical structures, but
require expensive or approximate graph matching algorithms to compare output to input molecules.
Molecular graphs also suffer from the possibility of invalid outputs, so reinforcement learning has
been used with them as well [23| 25]. Most work with molecular graphs has been confined to
two dimensions, though forays have been made into generating them along with distance matrices
[26} 127]. These 3D molecular graph-based models are promising, but have so far only been evaluated
at generating different constitutional isomers of a single, fixed set of atom types.

Atomic density grids have several advantages over other molecular representations, as well as limits.
Grids can process as many atoms as can fit within their bounds in constant time and memory,
while SMILES strings and molecular graphs scale linearly and quadratically with the number of
atoms. Grids facilitate learning from holistic 3D spatial configurations with convolutions [7] and
are permutation invariant, though not rotation invariant. Finally, density grids must be converted
into a discrete representation to generate valid molecules. Previous efforts at generating atomic
densities used a recurrent captioning network to convert them to SMILES strings [28]. However, this
relinquishes the 3D nature of the generative model. Rather than construct 2D molecules from 3D
densities, we solve for discrete 3D molecules that best fit atomic densities through optimization.

3 Methods

3.1 Representing molecules as atomic density grids

We represent molecules in a grid format amenable to convolutional network training that was first
described in [[7]. To convert molecules to grids, we assign each atom a type based on its element,
aromaticity, hydrophobicity, and hydrogen donor/acceptor state. Then, the atoms are represented as
continuous, Gaussian-like densities on a 3D grid with separate channels for each atom type, akin to
an image with separate channels for each color. We compute the values in each atom type channel
by summing over the density of each atom with the corresponding type at each grid point. Grids
span a cube of side length 23.5 A with 0.5 A resolution, resulting in 48 x 48 x 48 points per channel.
We center the grids on the input molecule and compensate for the lack of rotation invariance by
randomly rotating during training. We also evaluate 10 rotations of each molecule in the validation
and test sets. This is facilitated by computing grids on-the-fly using 1ibmolgrid, an open-source,
GPU-accelerated molecular gridding library [29].



3.2 Constructing molecules from atomic density grids

The inverse problem of converting density grids back into discrete 3D molecular structures does not
have an analytic solution, and instead must be solved through optimization. 1ibmolgrid allows us
to compute the grid representation of a partial atomic structure and backpropagate a gradient from
grid values to atomic coordinates. We can also estimate the initial locations of atoms on a density
grid by selecting from the grid points with the largest density values. Therefore, we devised a solver
algorithm that combines atom detection, gradient descent, and beam search (in which the current
top-k structures are stored and expanded) to find a set of atoms that best fits a reference density.

This algorithm returns atom types and coordinates, but further processing is required to produce
a valid molecule. We add bond information based on the returned atom types and geometry with
customized functions from OpenBabel [30}131] that infer connectivity and bond order while respecting
the constraints of our atom typing scheme. These constraints include aromatic ring membership,
presence of bonds to hydrogen and heteroatoms, and formal charge. The validity of the resulting
molecules are assessed using RDKit—a molecule is valid if and only if it is composed of a single,
connected fragment and raises no errors when passed to the RDKit function SanitizeMol [32].

3.3 Generative model architectures and training

We trained deep generative models using atomic density grids as both input and output. Generators
were trained as convolutional autoencoders to reconstruct their input by minimizing the squared
error, or L2 loss, of the output density with respect to the input density. In addition, we trained our
models as GANS, using an adversarial discriminative network to encourage the generated densities to
match the overall distribution of real densities. Initial experiments showed that including this GAN
loss simultaneously helped to reduce L2 loss and encourage the model to generate density for less
common atom types.

Both standard (AE) and variational (VAE) autoencoders were trained as the generator component.
Their architectures were identical except that the VAE had a probabilistic latent space that was trained
with a Kullback-Liebler (KL) divergence loss function to follow a standard normal distribution. The
VAE combined its KL divergence, L2, and adversarial loss functions with weights of 0.1, 1.0, and
10.0 respectively, while the AE weighted its L2 and GAN losses equally at 1.0. Models were trained
using the Adam optimization algorithm [33] with hyperparameters o = le—5, 1 = 0.9, 82 = 0.999
and a fixed learning rate policy for 100,000 iterations, using a batch size of 16. The full details of our
model architectures are found in Figure 7.

3.4 Data sets

In order to train deep neural networks to generate molecules in 3D, we downloaded the full set of
commercially available stock compounds from the MolPort database [|34] and filtered out any that
failed our atom typing scheme, yielding 7,559,852 distinct small molecules. Up to 20 conformers
were generated for each compound using RDKit, with an average of 14 conformations per compound.
Out of the 108,878,042 resulting molecular structures, we randomly held out 10% in a validation set
for model optimization, while the remaining examples were used for training.

Models were evaluated on an independent test set of compounds collected from PubChem [35] with
varying degrees of similarity to the training set. Any molecules that had more than one disconnected
fragment, had molecular weight > 1,000 Da, or had elements not found in our atom typing scheme
were excluded. The remaining compounds were then sorted into bins based on their maximum
similarity to any molecule in the training set, using the Tanimoto coefficient between OpenBabel
FP2 fingerprints. One thousand molecules were retained in each similarity bin of width 0.1 from 0.1
to 1.0, and 14 compounds were found with zero similarity to any training set molecule. A single
conformer was generated for each test set molecule using RDKit.

3.5 [Evaluation procedure

Our general approach consisted of a pipeline through successive molecular representations, as depicted
in Figure[T] The main pathway through the pipeline involved first typing and gridding real molecules
to produce real densities. Next these were encoded into latent vectors using either the standard or
variational autoencoder, then decoded as generated densities (AE posterior, VAE posterior). Densities
were also generated by decoding latent vectors from a standard normal distribution with the variational
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Figure 1: Overview of methods described in this work. Molecules are first converted to atom types
and coordinates, then to atomic density grids. A generative model encodes real density to a latent
space, then decodes to generated density. Atom fitting converts density to atom types and coordinates,
then bond adding produces output molecules. Dashed lines indicate alternate pathways through the
pipeline. From left to right, these are: adding bonds to real atom types and coordinates, fitting atoms
to real densities, and decoding latent vectors from the prior distribution instead of from the encoder.

autoencoder (VAE prior). Atom fitting was applied to generated densities to produce atom types and
coordinates, followed by bond adding to yield valid output molecules.

Alternate pathways through our pipeline served as baselines that allowed us to assess the performance
of each stage in isolation. We fitted atom types and coordinates to real density grids in order to
evaluate atom fitting independently from the generative models (Real density). This also established
an upper bound on our expected performance in atom-level metrics. We did the same for evaluating
bond adding and molecule-level metrics by adding bonds to real atom types (Real atom types).

We employed a variety of metrics based on the different representations to evaluate our methods. We
used L2 loss to directly compare generated densities to real densities and assess convergence while
training our neural networks. After fitting atoms to real or generated densities, we considered atom
type count differences and RMSD with respect to the real atom types and coordinates. Once molecules
were constructed by adding bonds to atomic structures, we computed their validity, molecular weight,
quantitative estimate of drug-likeness score (or QED score, in which higher is more drug-like) [36],
synthetic accessibility score (or SA score, in which lower is more synthesizable) [37] , and Tanimoto
similarity to the real input molecule using OpenBabel FP2 fingerprints.

During training, we evaluated each method on 1,000 random molecules from the validation set every
10,000 iterations. We generated output molecules for 10 different random rotations, and in the case
of the VAE, different latent samples, of each input molecule. For the VAE prior, which was not
conditioned on an input molecule, this simply meant generating 1,000 batches of 10 molecules from
different latent samples. Once training converged, we evaluated each method on the different test set
similarity bins. Again, we generated output molecules for 10 different random rotations and/or latent
samples of each input molecule, or an equivalent number batches from the VAE prior.

We tested our ability to recover input atom types and coordinates from real densities and generated
densities using atom fitting. After that we measured the overall validity of the molecules made by
assigning bonds to the atomic structures from each method. We then evaluated the distributions
of properties that are relevant to drug development on the valid generated molecules. Finally, we
visualized some examples of sampling and interpolating between 3D molecules in the latent spaces
learned by our generative models.
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Figure 2: Molecular reconstruction, size, validity, and drug-likeness metrics on the validation set with
respect to the training iteration. The filled-in areas show the average min and max across ten random
samples of each input molecule or prior batch.

4 Results

4.1 Training convergence

Figure 2] shows the training dynamics of our generative models on the validation set. The improving
quality of generated densities as measured by L2 loss also resulted in better atom fitting. This is
seen in the decreasing number of fit atom type differences relative to the input structure as training
proceeded. By the end of training, the structures fit to AE densities had the exact input types with
68% probability, and at least one sample out of 10 had the exact input types for 98% of validation set
molecules. Exact atom types were recovered from VAE posterior densities 15% of the time overall,
and at least one sample out of 10 had the exact atom types for 61% of validation molecules.

In all generative modeling methods, the number of fit atoms increased with training. Molecules
generated from the AE posterior converged to the average size of molecules in the true data distribution.
The VAE posterior tended to produce slightly smaller molecules than the AE, while the prior molecules
were significantly smaller than any of the other methods.

The validity shown in Figure [2] uses unmodified versions of OpenBabel ConnectTheDots and
PerceiveBondOrders functions on the fit atomic coordinates instead of our full bond adding
routine. These do not connect distant fragments with long bonds or use atom types to constrain bond
adding, so this metric can be considered a simple proxy for geometric validity of the coordinates
produced by atom fitting. Both the AE and VAE posterior molecules tended to produce increasingly
valid coordinates over time, while the prior molecules had low coordinate validity for most of training.

The AE and VAE posterior generated molecules increasingly similar to the input as training progressed.
After 100,000 iterations, the AE produced molecules with a Tanimoto similarity of 0.61 on average,
and in a batch of 10 samples the most similar molecule had an expected similarity of 0.88. Around
54% of the validation set molecules were perfectly reconstructed in at least one sample from the AE.
The VAE posterior molecules had an average similarity of 0.32 to their input molecule and less than
10% yielded the same exact molecule in any sample.

The QED score of valid molecules created by the AE approached the mean of the validation set by
iteration 100,000. The drug-likeness of the VAE posterior increased during training as well. For both
the AE and VAE posterior, the most drug-like output sample had a higher mean QED score than the
input molecule. The QED scores of prior molecules converged lower than the posterior molecules,
but the maximum QED score per batch was in the range of the posterior molecules.
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Figure 3: Ability to exactly fit atom types and coordinates of test set molecules to real densities or
those generated from the autoencoder or variational autoencoder posterior, using 10 samples per
molecule. In the line plots, the area from the expected sample min to the sample max is filled in.

4.2 Atom fitting reconstruction

Our capability to reconstruct atom types and coordinates of test set molecules from real and generated
densities is shown in Figure 3] The mean L2 loss of AE and VAE posterior densities on the test
set was around 14 and 27 respectively. There was little correlation with the test set similarity bin,
suggesting that the neural networks were not overfit to the training set.

Fitting atoms to real densities produced an average type difference of 0.11 compared to the real
atom types, and the exact input types were reconstructed with 98% probability. The number of type
differences from fitting to generated densities was 1.9 for the AE and 4.2 for the VAE posterior on
the test set, which translated into recovering the exact types from 47% of AE densities and 10% of
VAE posterior densities. The exact input types were recovered in at least one sample for 70% of test
set molecules using the AE and 34% with the VAE posterior. Atom type differences were higher on
generated densities when input molecules were less similar to the training set.

Whenever the input atom types were recovered exactly by atom fitting, we computed an RMSD to
the real atoms by finding the minimum-distance assignment between atoms of the same type. The
average RMSD was 0.011 A for atoms fit to real densities, 0.28 A when fitting to AE densities, and
0.47 A when fitting to VAE posterior densities. This indicates nearly identical coordinates in every
case, with slightly more variation from the VAE.

4.3 Molecular validity

Once atom fitting was validated, we assessed the ability to produce valid molecules by adding bonds
to atom types and coordinates from each method, using the test set as input. We were able to produce
valid molecules from over 99% of real atom types and atoms fit to real densities. Using our generative
models, we created valid molecules from 92% of AE densities, 91% of VAE posterior densities, and
91% of VAE prior densities. At least one valid sample was generated for 98% of test set molecules
using the AE, 99% using the VAE posterior, and for 100% of prior batches. The most common reason
for invalid molecules was an atom having a greater valence than permitted, followed by failing to
assign discrete bond orders to ring systems marked aromatic.

4.4 Properties of valid molecules

Figure ] shows drug property distributions of valid molecules from our generative models on the test
set compared with baseline methods. In addition to using the real test set molecules as a baseline, we
included molecules from adding bonds to real atom types and coordinates. The output molecules
from real atom types had mean Tanimoto similarity greater than 0.82, and a median of 1.0, to the
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Figure 4: Properties of valid molecules from the test set (Real mol.), from bond adding to real atom
types (Real types), and from the generative models (AE post., VAE post., VAE prior). Ten output
samples were produced for each input molecule, and the range from the expected sample min to
sample max is filled in on the line plots.

input molecule. The similarity to the input declined as the input molecules became less similar
to the training set. Despite this, the distributions of molecular weight, QED score, and synthetic
accessibility of molecules from adding bonds to real atoms were all highly matched with the real test
set molecules.

The expected Tanimoto similarity of AE posterior molecules to their input was 0.43, and the most
similar output sample was around 0.63. VAE posterior molecules had a lower expected similarity of
0.24, with the most similar sample expected at 0.43. The similarity of VAE prior molecules to random
test set molecules was only 0.13. The output molecules from every generative method decreased in
similarity to the input as it became less similar to the training set, following the same trend seen in
bond adding to real atoms.

The molecules generated from the AE and VAE posterior were similar in size to real molecules by
molecular weight, though slightly smaller on average. VAE prior molecules were significantly smaller
than either VAE posterior or real molecules. When the input molecule had less than 0.3 similarity to
the training set, the size of the output molecules from the AE and VAE posterior fell to around that
of the prior distribution. On all other test set bins, the molecular weight of posterior molecules was
highly correlated with the size of the input.

The mean QED score of AE posterior samples was 0.49, which is near the drug-likeness of real
molecules in our test set. The VAE posterior and prior molecules had slightly lower expected QED
scores of around 0.43 and 0.38. The most drug-like output molecule in ten samples had higher
expected QED than the input molecule, using either the AE or VAE posterior. This trend held
across every test set bin except molecules with 0.0 similarity to the training set. The SA score of
molecules from the generative models tended slightly higher than real molecules, indicating lower
synthesizability. However, they were more synthesizable than the most dissimilar test molecules.

4.5 Latent sampling and interpolation

Finally, we exemplify two potential use cases of the continuous latent spaces in which our generative
models learned to represent 3D molecules. Figure[5]shows examples of molecular structures produced
by drawing 10 random samples from either the VAE posterior or prior and selecting the sample with
the highest QED score. Each molecule is displayed in 2D and 3D, with the 3D structure minimized
using UFF [38]. The unminimized 3D conformation produced by the generative model is overlaid
with transparency. 80% of the VAE posterior examples shown have higher QED score than their input.
The amount that the VAE posterior outputs were modified compared to the input varied widely—some
examples differed in only a single bond or functional group, while others reconfigured the entire
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posterior samples using the above molecule as input, and the most drug-like output molecules from
unrelated batches of 10 VAE prior samples. Each molecule is annotated with its QED score.

molecule. There was a clear tendency to alter rings and scaffolds in unusual ways, creating structures
that bear a high degree of shape similarity but little topological resemblance. On the other hand, the
VAE prior molecules were mostly small, fragment-like structures with numerous polar functional
groups but not much scaffold diversity.

In Figure[6] four different interpolations were performed between different molecules or different
poses of the same molecules through the latent spaces learned by our generative models. The
AE interpolations were performed linearly, while the VAE interpolations used spherical linear
interpolation. There is some degree of chemical structure maintained throughout the interpolations.
For instance, the sulfonyl and amide groups are present in almost every step of the AE pose transition.
Most of the transformations maintain overall shape continuity rather than topological or chemical
similarity. This is evidenced by aromatic densities that smoothly change size and position translating
into aromatic rings that become smaller, non-aromatic rings or alkane branches.

5 Discussion

By training deep generative models on atomic density grids and applying our atom fitting and bond
adding algorithms, we have developed the first deep learning model for generating three-dimensional
molecular structures with diverse chemical compositions. Our models generate valid molecules at
a rate greater than 90%, but we realized that validity may be an insufficient metric for assessing
generative models of 3D molecules since it ignores geometry and energetic favorability. Molecules
that were made valid by adding strained bonds to ensure a single connected fragment often had high
energy. This highlights the need for different evaluation criteria for generating 3D molecules than
those used for 2D molecules.

Our standard AE was successful at exactly reconstructing its input atom types and coordinates in
about half of test set densities, but fell off when evaluating molecules that were increasingly dissimilar
to the training set, as seen in Figure[3] This was not attributable to atom fitting, since we were able
to reconstruct the exact atom types in 98% of real densities regardless of the test set bin and attain
extremely low RMSD. On the contrary, the disparity in fitting to generated densities was reflected
in the L2 loss of those densities, implying that future work should focus on improving the quality
of the underlying generative models. It could also be a sign of overfitting and the need for a stricter
validation set, since this was not detected in Figure[2]
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Figure 6: Four different interpolations between molecules in latent space, each shown in 3D with
overlaid structures and densities and also as 2D structures. No minimization was performed on the
structures. The first interpolates between two poses of the same molecule using the AE. The second
interpolates between two samples of the same molecule using the VAE. The third and fourth use the
AE and VAE to interpolate between two entirely different molecules.

The VAE posterior was less likely to reconstruct the input, producing outputs that differed by about 4
atom types on average. This was expected as the VAE should, by design, produce variations of the
input, and could be used to propose new drug-like molecular structures related to a given molecule.
This was supported by the fact that the maximum QED score of the VAE posterior samples were
higher than the QED of the input, as seen in Figure [d] Furthermore, there was no change in the
synthetic accessibility of the VAE posterior molecules as the input became less similar to the training
set. These observations suggest that the variational posterior had the capability of reliably proposing
novel drug-like compounds based on input molecules.

The VAE prior molecules had slightly lower drug-likeness and higher synthetic accessibility than the
posterior, in part due to their lower molecular weight. A primary objective in variational models is
gaining the ability to sample useful outputs from the prior, and in their current state our VAE prior
molecules are too small and structurally simple. Moving forward, an increased emphasis will be
placed on transferring the relative success of posterior sampling to the prior, for instance by increasing
the KL divergence loss weight over time or explicitly training on prior samples.

Given that we generated molecules with a Tanimoto similarity of only 0.82 to the real molecule
from real atom types and coordinates, there is room for improvement in bond adding. This is likely
due to limitations in our atom typing scheme, which lacks the information (e.g. formal charges,
hybridization states) necessary to perfectly reconstruct certain molecules. An alternative atom typing
scheme that provides better information for bond adding could improve our molecular reconstruction
accuracy and the diversity of our novel generated molecules.

This work serves as a proof of concept for generating 3D molecules using deep learning that can be
expanded in numerous ways. The ability to map molecular structures to and from a continuous repre-
sentation introduces the possibility of applying continuous optimization to the generation of desirable



molecular structures. While 2D generative models have utilized cheminformatic property optimiza-
tion, we are currently integrating protein structures into our pipeline to create 3D structure-conditional
generative models. These are tasked with learning distributions over bound ligand structures con-
ditioned on a binding pocket. The potential for new directions in 3D generative models for drug
discovery are vast, and we hope that their exploration can be accelerated by making this project pub-
licly available at https://github.com/mattragoza/1iGAN and https://github.com/gnina.
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6 Supplementary Materials

6.1 Model architecture details
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Figure 7: Generative and discriminative neural network architectures. The variational latent space
is depicted, but the AE and VAE had identical architectures in every other respect. They consisted
of symmetrical encoder and decoder sub-networks that were each a series of convolutional blocks
interleaved with average pooling (in the encoder) or nearest-neighbor upsampling (in the decoder).
Both the AE and VAE had a latent space of size 1024 and used leaky ReLU activation functions.

6.2 Atomic density and gridding functions

In the molecular grid format, atoms are represented as continuous, Gaussian-like densities on a three-dimensional
grid with separate channels for each atom type, analogous to an RGB image. The density of an atom at a grid
point is a function of the displacement and the atomic radius:

_a(lelly2
e 0 < [lel| < 7.
fle) =94 S(dy? - Bl 4 5 v < el| < 31 M
0 3re < el

Given a 3D molecular structure with N atoms and Nt possible atom types as a vector of atom type indices
T € [1, Nr])" and a matrix of atomic coordinates C' € R *3, the grid values in each atom type channel are
computed by summing the density of each atom with the corresponding type at each grid point:

N
9(T, o, = Y UT =) fo(Cs — (2,9, 2)) ©)
=1

Atom density kernel

filc)

-0.25

-0.50

oo
Id

Figure 8: The Gaussian-like function, or kernel, from Equationthat computes the density of a single
atom at a grid point based on their displacement and the radius of the atom type.
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6.3 Atom fitting algorithm

Algorithm 1: AToM FITTING Find a set of atoms whose density minimizes the squared error
w.r.t. the reference atomic density grid using beam search and gradient descent.
RNthsznyz

Input: An atomic density grid G,y €
Output: The best-fit atom type indices 7' € [1, N¢]"¥ and coordinates C' € RY*3
begin
T,C « (), ()
1085 < ||Gres||?
structinir < (loss, T, C)
best_structs < {structinit}
visited_structs <
found_new_best_struct < true
while found_new_best_struct do
found_new_best_struct < false
for struct € best_structs do
if struct € visited_structs then
| continue

loss, T, C «+ struct
G pit + struct_to_grid(T, C)
Guifr < Gres — Gy
for (tnew, Cnew) € top_k_next_atoms(Gaisy) do
Thew < append tpew to T
Chew < append Cpew to C'
108Snew, Cnew  gradient_descent(Gref, Tnew, Cnew)
structnew (l055n6w7 Tneun Cnew)
if l0SSnew < any struct € best_structs then
Add structpew to best_structs
L found_new_best_struct + true

| Add struct to visited_structs

if found_new_best_struct then
L best_structs < top_k_structs_by_loss(best_structs)

| loss, T,C + best_struct_by_loss(best_structs)
return 7', C

100
[ Real molecule

[ Real atom types
80 [ Real density
[ AE posterior
1 VAE posterior
=3 VAE prior

o
S

% of molecules
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3

20

0 o |

Valid Bad valence Failed to kekulize

Figure 9: The percent of molecules from each method that are valid. The invalid molecules are
broken down by the reason they failed sanitization in RDKit.
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