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Abstract

Predicting the interaction between a compound and a target is crucial for rapid drug
repurposing. Deep learning has been successfully applied in drug-target affinity
(DTA) problem. However, previous deep learning-based methods ignore modeling
the direct interactions between drug and protein residues. This would lead to inac-
curate learning of target representation which may change due to the drug binding
effects. In addition, previous DTA methods learn protein representation solely
based on a small number of protein sequences in DTA datasets while neglecting
the use of proteins outside of the DTA datasets. We propose GEFA (Graph Early
Fusion Affinity), a novel graph-in-graph neural network with attention mecha-
nism to address the changes in target representation because of the binding effects.
Specifically, a drug is modeled as a graph of atoms, which then serves as a node
in a larger graph of residues-drug complex. The resulting model is an expressive
deep nested graph neural network. We also use pre-trained protein representation
powered by the recent effort of learning contextualized protein representation. The
experiments are conducted under different settings to evaluate scenarios such as
novel drugs or targets. The results demonstrate the effectiveness of the pre-trained
protein embedding and the advantages our GEFA in modeling the nested graph for
drug-target interaction.

1 Introduction

Predicting drug-target binding affinity (DTA prediction) is crucial in new drug development as well
as drug repurposing [1]. Machine learning methods are particularly attractive because they offer
cheap and fast alternatives with reasonable performance thanks to the large DTA databases [2] that
we can leverage on. With the advance of machine learning, many computational prediction methods
[3]-[6] have been proposed to tackling DTA. In recent works, the protein is typically represented as
amino acids sequence [5]-[7]]. The drawback of using protein sequence is that it can not represent
the 3D structure. However, obtaining the high-resolution 3D structure is a challenging task. A more
practical solution is using the 2D residue contact maps to represent tertiary protein structure. The
contact map can be naturally modeled using recent advances in deep learning known as graph neural
networks (GNN). Here each residue is represented as a node in the graph, and a contact between two
residues as an edge.

Previous deep learning-based DTA prediction methods [5]]-[8]] often use the late fusion approach.
The late fusion approach extracts drug and target representation separately then predicts the binding
affinity from the combined representation at the very end of the process. However, this practice
ignores the fact that the binding occurs at a pocket rather than the whole protein. Once the drug
binds, it changes the protein functions to have pharmaceutical effects, hence it can also change the
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protein structure [9]], hence its representation. The change in protein representation due to the binding
process is not addressed in late fusion approach. In addition, the model assumes non site-specific
binding, making it difficult to assign the credit to the sites that interact. It can also result in slower
learning rate, and less interpretable prediction.

To address target protein representation change, we propose an early-fusion-based approach. Initially,
we extract representation feature for a given drug molecule from its drug graph structure. Then, the
drug representation is integrated into the protein graph structure before the protein representation
learning phrase. This is basically a graph structure nested inside another graph structure. This
graph-in-graph neural network design allows the model to learn changes in protein representation
caused by the binding process with the drug molecule.

Previous works [5]-[7]], [1O] normally use one-hot encoding to vectorize residues. This conventional
approach fails to embed the contextual dependencies between residues as well as not being able to
make use of unlabeled protein sequences. We take advantage of the power of the protein embedding
features learned by a protein language modeling on a large collection of protein sequences, including
proteins that are not available in DTA datasets, to represent the residues in a given target protein.
In this work, we refer target proteins whose the binding affinities available in the DTA datasets as
labeled ones while proteins that do not exist in the DTA datasets as unlabeled proteins.

In summary, the contribution of our work is two-fold. First, we combine the protein sequence
embedding feature and protein contact map to build the graph representation of a target protein.
Second, in order to reflect the target representation change during the binding process, we propose a
so-called Graph Early Fusion for binding Affinity prediction (GEFA) for more accurate biological
modeling. We demonstrate the effects of the GEFA on Davis dataset [11]] where it has shown superior
performance against previous studies on different settings. Our Python implementation is publicly
available at https://github.com/ngminhtri0394/GEFA.

2 Related Works

2.1 Drug-Target Binding Affinity Prediction Problem

Drug-target binding affinity indicates the strength of the binding force between the target protein and
its ligand (drug or inhibitor) [12]]. The drug-target binding affinity prediction problem is a regression
task predicting the value of the binding force. The binding strength is measured by the equilibrium
dissociation constant (K p). A smaller K value indicates a stronger binding affinity between protein
and ligand [12]. There are two main approaches: structural approach and non-structural approach [|1].
Structural methods utilize the 3D structure of protein and ligands to run the interaction simulation
between protein and ligand. On the other hand, the non-structural approach relies on ligand and
protein features such as sequence, hydrophobic, similarity or other alternative structural information.

2.2 Non-structural Approach

The non-structural approach solves the binding affinity regression task without the accurate 3D
structure of the target. Instead of using the 3D coordinate of target and drug atom. The non-structural
approach relies on the drug-drug, target-target similarity, target and drug atom sequence, and other
alternative structural information such as contact map or secondary structure.

2.2.1 Deep Learning Based Methods

DeepDTA [35] predicts the binding affinity from the 1D representation of protein and drug. WideDTA
[7] is an extension of DeepDTA. Protein is represented not only in sequence but also in motif and
domain. The drug is represented in SMILES and Ligand Maximum Common Substructures. Instead
of using 1D representation for drug, GraphDTA [6] uses graph to express the interaction between
atoms of the molecules. This allows modeling the interaction between any two atoms within the drug
molecules. DrugVQA [8] uses distance map to represent the protein. Sequential self-attention is
used to learn which parts of the protein interact with the ligand. Multi-head self-attention is used to
learn which atoms in drugs have high contribution to the drug-target interaction. Graph-CNN [13]
pretrains the protein pocket graph autoencoder by minimizing representation difference. The binding
interaction model has protein pocket graph and 2D molecular graph as the inputs. The unsupervised
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learning helps the model to overcome the limited pocket graph training data. DGraphDTA [10] uses
contact map to build protein graph structure with PSSM, one-hot encoding, and residue properties as
node features. This allows the model to obtain an accurate protein representation.

3 Proposed Methods

The task of drug-target binding affinity (DTA) problem is to predict the binding affinity A between a
target protein P and drug compound D. Mathematically, the problem is formulated as a regression
task:

A:]-O(P7D)7 (1)
where 6 is model parameters of predicting function F.

In this section, we present details of our approach to solve DTA. In Sec. [3.1] explains the feature
representation of target protein P, followed by the feature representation of drug compound D in Sec.
[3.2] The main contribution of ours is presented in Sec. [3.3] where we aim at reflecting the changes in
the target protein representation due to the conformation change.

3.1 Graph Representation of Protein

Given that we have the contact map information, each target protein is considered as a graph
structure where nodes are residues in the protein sequence. Leveraging the rich set of unlabeled
proteins, we utilize state of the art language modeling methods to learn contextual residue embedding
representation. Language modeling is learning the representation of sequence using pretext tasks
such as predicting missing token or the next token in sequence [14]]. TAPE is a variant of language
model for protein representation in particular. We use embedded representation learnt from a large
collection of unlabeled protein sequences provided by TAPE [15] instead of one-hot encoding to
represent each node in the protein graph. Subsequently, given a protein sequence of L residues, the

node features of the protein graph is a set V, = {v; | v; € Rh}iLzl, where  is the length of the
embedding vector v; provided by TAPE. Each v; is contextual, that is residues occur in the context of

surrounding residues. Therefore, the structural information is implicitly encoded into the embedding.

We use secondary structure as it decides the backbone shape of the target protein which also con-
tributes to the shape of the binding site and overall structure. For each residue, the secondary structure
feature is represented as the probability of three secondary structure type « helix, 5 pleated sheet,
and coil.

Solvent accessibility indicates the level of interaction between residues and drug molecule. Solvent
accessibility is divided into three classes: buried (pACC from 0 to 10), medium (pACC from 11 to
40), and exposed (pACC from 41 to 100). Eventually, the combination of embedding vector extracted
by TAPE, secondary structure feature vector, and solvent accessibility feature vector are used to
represent node features of residues in a target protein graph.

The contact map information provides the contacts between any two residue nodes in a protein graph.
The sequence information is also retained in the graph structure in form of edges linking any two
nodes of adjacency residues in the protein sequence. In practice, the contact map and sequence
information are stored as an adjacency matrix 4,,. In the rest of this paper, we denote the protein
graph as G, = (V,, A,), where V, are residue nodes in the protein chain.

3.2 Graph Representation of Drugs Compounds

The input drug compound is in the SMILES format. In the graph representation of molecule, atoms
are nodes while the bonds between atoms are edges. The node feature consists of five properties: atom
symbol, atom degree which is the total number of bonded atom neighbors, the number of hydrogens,
implicit value of the atom, and whether if the atom is aromatic. These features are concatenated to
form a multi-dimensional feature. The edges are expressed by an adjacency list indicating if there are
bonds between any two atoms in the compounds. As the bonds are symmetric, a drug compound
graph is a bidirectional graph. In the later use of graph representation of a drug compound, we refer
itas G = V4, Aq), where Vg is atom features and A, is bonds between atoms.



3.3 Graph Early Fusion for binding Affinity prediction (GEFA)

The overall architecture of our proposed method is presented in Fig[T| Our GEFA takes as input the
graph structure of drug G4 and the graph structure of target G,, and outputs the prediction of binding
affinity. We use Graph Convolutional Network (GCN) [[16] for graph representation. In addition, we
also make use of the well-known residual skip connection trick to make use of very deep GCNs.

3.3.1 Graph Convolutional Network

GCN is a convolutional network designed specifically for graph-structured signals. The goal is learn
the node-level representation from a given input graph G = (X, A) where X’ is node feature matrix
of N nodes and A € RV*Y is the adjacency matrix that describes the graph structure. Let W' be
the weight matrix at [-th layer, the graph convolution operation is defined by:

H'=2X, 2
H =o (D*%AD*%HZ*1WI*1> , 3)

where A = A + T is the adjacency matrix with self-loop in each node. 7 is the identity matrix and
D= Z AZ ; and o is a non-linear function which is a ReLU [17] in our later experiments.

3.3.2 Deeper GCN with Residual Blocks

In general, a deeper model can generalize better and more compact than shallow networks|[18]].
However, stacking the vanilla GCN often suffers from the problem of gradient vanishing and
numerical instability as a consequence of matrix multiplication in Eq. [3] To mitigate this problem,
we use the GCN with residual skip-connection proposed in [[19]]. Similar to the effect of the residual
block in the well-known CNN [20], skip connection in GCN helps to create more direct gradient flow,
hence, allows to go deeper with more convolution layers. Mathematically, the graph convolution
operation is given by:

H' =X, S
FUH'TY =Wy o (AH ™ W 071, (5)
H' =o(H'" + FI(H'" 1)), (6)

where Wy, W5 are learnable weight matrices, [ is layer-wise index and o is a non-linear function
which is a ReLLU activation function.

3.3.3 Graph-Graph Integration with Early Fusion

To reflect the changes in representation of a target protein due to the interaction between drug
molecule and protein, we propose Graph Early Fusion for binding Affinity (GEFA), a method for
migrating the drug molecule graph G; = (V4, Aq) into the protein graph G, = (V,, A,) via a
self-attention mechanism.

We first refine node re resentations in the drug graph with a two-layers GCN as in Eq. [3]and residual
blocks as in Eq. |4 Let Vd = {v} | vi € RM}5 | as node features of the drug graph after GCN,
where S is number of nodes in the drug graph N ote that v contains aggregating information from
its neighbors so we simply use the largest estimated representation of the refined drug graph as the
representation of the entire graph. This is easily obtained by a max pooling operation followed by
two linear layers for feature projection:

Vhax = MaxPool(V)), (7

xqg = (Wovl . + bo)W1 + by. (8)
We call the resulted vector z4 € R as the drug molecules node, where h; is dimension of 4.

We now explain how we integrate the drug molecules node z4 into the protein graph G, = (V,, A,)
which is the main contribution of our work. The key idea is to use the drug node =4 as an additional



node that binds to the target graph G,,. The edges connecting the drug node and residue nodes in the
protein graph indicate the interaction between residues and drug molecule as well as the binding site.
Since not every residue contributes equally to the binding affinity, the edge weights indicate the level
of interactions of each residue with the drug molecule. To learn the level of contribution, we utilize a
self-attention mechanism driven by the residue features V,, = {v; | v; € R"}L |, recalling that L is
the length of the protein sequence. The self-attention mechanism is motivated from the fact that the
binding site of the protein depends on the protein structure. In the other word, the attention weights
tell which residues are more likely to participate in the binding process. Mathematically, the attention
weights are given by:

a; = sotfmax(Watanh(W1v;)), 9)

where Zle a; = 1,v; is the i-th residue feature, and W and W are the learnable parameters.

Given the drug node x4 and its connections to residues in the target protein graph G, denoted by
{a;}E |, we now construct a cross-domain graph G,q = {Vpa, Apa} Where Vg = {V,, 24} and
Apa = {Ap, {a;}}. Similar to what we have done with the drug graph earlier, we employ a
two-layers GCN followed by residual blocks to refine the node representations of the drug-protein
graph G,q.
Before performing the graph feature extraction, the drug node after fusion v&p in the refined nodes
z,)d by GCN:s is taken out from the protein graph to ensure that the graph feature only contains
residues nodes. Eventually, we extract the latent representation of the protein graph with a global
max pooling operator followed by a two-layer linear network:
Unax = MaxPool(V,), (10)

max

Upd = (Wovlinax + bO)Wl + blv (11)

wh;re V;D = {Vzl)d \ v(’jp} is the node representations of the protein graph after removing the drug
node.

At the same time, the drug latent vector x4 is transformed into the same dimensional space with vgp
via a linear transformation. We further obtain the final representation of drug by combining these two
features with a simple concatenation operator.

Vab = [Ta; V), (12)

where [ ;]| denotes the concatenation operation of two vectors. A max-pooling operation is then
performed along the channel dimension to obtain the combined drug representation.

V4. = MaxPool(vgp). (13)

Consequently, the drug vector vg. and the protein latent vector v,,4 are concatenated and finally fed
into a predictor of three fully connected layers to predict the binding affinities.

We wish to hypothesize that our early fusion approach with self-attention has two benefits. First, the
early fusion approach explicitly models interactions between the drug graph and the target protein
graph. Second, the self-attention allows the learning model to be more interpretable by showing
which residues interact with drug molecules and how much they contribute to the binding process.
We will back these in our later experiments.

4 Experiments

We evaluate our proposed model GEFA on Davis dataset[11]] and compare against a late fusion base-
line as well as state-of-the-art methods including GCNConvNet [6], GINConvNet [[6], DGraphDTA
[10]. Among those methods, GCNConvNet and GINConvNet use protein sequence and drug molecule
graph as the input while DGraphDTA uses a protein graph built from contact and drug molecule as
the input. We present the qualitative results in Sec. 4.1 and further provide analysis of our proposed
model via extensive ablation studies in Sec[4.2l
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Figure 1: Illustration of Graph Early Fusion for binding Affinity prediction (GEFA). The GEFA
takes as input the graph representations of a drug molecule and a protein target. We first use graph
convolution network (GCN) for the drug graph feature refinement before applying a max pooling
operator to obtain the estimated representation of the entire drug graph. The drug estimated vector
is then used as an additional node to the protein graph, establishing graph-in-graph representation
across domains. Information retrieved from the drug-protein graph along with the drug representation
are finally used as the input for predicting the binding affinities between the given drug molecule and
the protein target.



4.1 Quantitative Experiments
4.1.1 Dataset

Davis dataset consists of binding affinity information between 72 drugs and 442 targets. The binding
affinity between drug and target is measured by K p (kinase dissociation constant) value [[11]]. For the
Davis dataset, the drug SMILES sequence of 68 drugs and the target protein sequence of 442 targets
from DeepDTA[5] training/test set are used in our experiments.

There are four experiments settings for four scenarios. The first experiment setting is the warm
setting where both protein and drug are known to the model. The second experiment is cold-target
where proteins are unknown to the model and drugs are known to the model. In this case, each
unique protein sequence only appears in training, validation, or test set. As targets in the cold-target
setting are required to be unique in both train, validation, and test sets, targets having the same
sequence are filtered out which results in 361 targets. The 361 targets are split at 0.8/0.2 ratio for
training-validation/testing. Then the training set is split at 0.8/0.2 ratio for training/validation. The
third experiment setting is cold-drug where proteins are known to the model and drugs are unknown
to the model. We conduct the same splitting procedure in cold-target but applying for drugs. Finally,
the last experiment setting is cold-drug-target where both drugs and proteins are unknown to the
model. In this setting, we conduct the splitting procedure for both drug and target to ensure training,
validation, and testing set do not share any common drug or target.

4.1.2 Implementation Details

Our methods are implemented using Pytorch. The protein sequence embedding features are extracted
using TAPE-Protein [21]. The contact map is predicted by RaptorX [22]]. The TAPE-Protein uses
BERT language modelling [14]. The output of TAPE-Protein embedding features extraction is a
embedding vector size 768. The graph convolution network uses the Pytorch geometric library [23].
The model are trained on 128 mini-batch. The learning rate is 0.0005 in warm setting. In cold-target,
cold-drug, and cold-drug-target setting, the learning rate is 0.001 as higher learning rate helps model
to have better generalization and less likely to overfit. The learning rate decay is used. The learning
rate is reduced by 20% every 40 epochs without improvement in MSE metric in the validation set.
Adam optimizer is used. The model is trained in 1000 epochs.

4.1.3 Evaluation Metrics

The models’ performances are evaluated using Concordance Index (CI)[24], Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), Pearson[25]], and Spearman[26].

4.1.4 Results

To compare our early fusion approach with the conventional late fusion approach, we provide a
late fusion baseline model. Our late fusion baseline model (GLFA - Graph Late Fusion for binding
Affinity) follows the convention model in which drug and protein representation are learned separately.
GLFA has graph structures of drug and target as the input. Both graph structures are processed using
the two-layers GCN and residual blocks in parallel to learn the hidden features. Then, the latent
features are obtained by global max pooling followed by two linear layers. The latent features from
both protein and drug are concatenated before under-going three fully connected layers. The output
of the final fully connected layers is the binding affinity value of the input drug and target protein.
The late fusion model is a special case of early fusion where all drug-residues edge weights are set to
0. The late fusion approach is used as baseline to compare with our proposed early fusion approach.

We report our late fusion approach, GLFA, and early fusion approach, GEFA, with previous works in
Davis benchmark on four settings in Table|l] Our proposed method GEFA consistently outperforms
previous works in four settings. Our proposed methods achieve state-of-the-art performance across
all four settings. Between two late fusion based methods DGraphDTA [10] and GLFA, our proposed
GLFA method also outperforms DGraphDTA. This follows our expectations as the embedding feature
contains richer information than one-hot encoding and PSSM. This also demonstrates the advantage
of using the residual block.

DgraphDTA [10]], GLFA, and GEFA outperform GINConvNet in all four settings. GINConvNet and
GCNConvNet [6] only use sequence and CNN to learn the target representation. On the other hand,



Table 1: The result of quantitative experiments

Architecture RMSE| MSE| Pearsont Spearmanf CI7
Warm start setting
GCNConvNet [6] 0.5331  0.2842 0.8043 0.6609 0.8649
GINConvNet [6] 0.50723 0.2573 0.8245 0.6818 0.8785
DGraphDTA [10] 04917  0.2417 0.8378 0.7001 0.8869
GLFA 0.4850  0.2353 0.8412 0.7073 0.8950
GEFA 04775  0.2280 0.8467 0.7023 0.8927
Cold-target setting
GCNConvNet [6] 0.7071 0.5000 0.5145 0.4316 0.7293
GINConvNet [6] 0.7144  0.5104 0.5166 0.3904 0.7065
DGraphDTA [[10] 0.6855  0.4700 0.5597 0.4941 0.7656
GLFA 0.6732  0.4531 0.5828 0.5228 0.7802
GEFA 0.6584  0.4335 0.6030 0.5506 0.7951
Cold-drug setting
GCNConvNet [6] 0.9723  0.9454 0.3385 0.3764 0.6784
GINConvNet [6] 0.9592  0.9200 0.3779 0.3693 0.6758
DGraphDTA [10] 09583  0.9184 0.3610 0.3150 0.5337
GLFA 0.9280 0.8612 0.4023 0.3549 0.6703
GEFA 0.9202 0.8467 0.4515 0.4320 0.7091
Cold-drug-target setting
GCNConvNet [6] 1.0632  1.1304 0.1904 0.1698 0.5782
GINConvNet [6] 1.0651 1.1345 0.1974 0.2763 0.6275
DGraphDTA [10] 1.0749  1.1554 0.0228 0.1795 0.6081
GLFA 1.0698  1.1444 0.3473 0.2901 0.6362
GEFA 0.9949  0.9899 0.3148 0.2932 0.6390

DgraphDTA [10]], GLFA, and GEFA use the graph built from the protein contact map and learn the
target representation using GCN. This demonstrates the advantage of using the graph representation
of the contact map.

Between our two proposed methods GEFA and GLFA, the early fusion method GEFA shows
advantages over late fusion method GLFA. This follows our expectation as the early fusion allows
interactions between drug and protein graph during the graph representation learning phase for more
accurate latent representation.

4.2 Ablation Studies

To understand the contribution of each component to the overall performance in the early fusion GEFA
model, we remove each component from the GEFA model. We conduct the ablation experiment
using the Davis dataset benchmark in the warm setting. First, we evaluate the usage of the embedding
feature by comparing it with the one-hot encoding. Second, we evaluate the usage of attention mask
as the graph edge. Instead of using attention as drug-residue edge weight, drug-residue edges are
weighted the same as the residue-residue edges in the target graph. Third, we evaluate the usage of
the 2-layer GCN and the usage of residual blocks to refine graph structure. As all residual blocks
have shared weight, this reduces the number of parameters, which may help in the case of over-fitting.
Fourth, we evaluate the residual blocks. We test three cases: without residual blocks in both protein
and drug graph, without protein graph residual blocks, and without drug graph residual blocks.
Finally, we compare the drug representation extracted from the drug-protein fusion graph and drug
representation extracted from the drug graph. Instead of fusing two types of drug features followed
by pooling, we only use one type of drug feature to combine with graph-based protein representation.

As shown in Table. 2| model using the protein embedding feature has an improvement of 11.85% in
MSE and 1.00% in CL. This emphasizes the advantage of using the protein embedding feature as the
graph node feature.



Table 2: The result of experiment warm setting with different component in Davis dataset in warm
setting. The first row shows proposed GEFA with all components.)

Architecture RMSE| MSE| Pearson? Spearmanf CIt
GEFA 04775  0.2280 0.8467 0.7023 0.8927
One-hot encoding 0.5050  0.2551 0.8274 0.6919 0.8837
W/o attention 0.4887  0.2388 0.8392 0.7014 0.8909
W/o 2-layer GCN 0.4844  0.2346 0.8425 0.6933 0.887
Residual blocks usage

W/o residual blocks 0.4933  0.2434 0.8351 0.686 0.8819

Drug graph res. blocks 0.4944  0.2444 0.8351 0.6874 0.8828

Protein graph res. blocks 0.4873  0.2375 0.8407 0.7045 0.8941
Drug representation choice

Before fusion rep. 0.4806  0.231 0.8448 0.7058 0.8954

After fusion rep. 0.5171  0.2673 0.8174 0.6437 0.8558

Using attention mask as the drug-residue edge in protein graph gains improvement of 4.74% in MSE
and 0.20% in CI. Without the attention mask, we assume that the drug molecule interacts with all
residues in target protein equally. However, each residue contributes differently to the binding process.
Therefore, it is reasonable to use self-attention to learn each residue’s contribution level which is used
as edge weight between drug node and residue node.

Using the 2-layers GCN (GEFA in Table. [2) shows improvement compared to without using 2-layer
GCN (w/o using the 2-layers GCN in Table. [2). Compared to the model using solely residual blocks
as graph refinement (w/o 2-layer GCN in Table. [2), the model with residual block shows an advantage
over the model with only the 2-layers GCN (w/o graph residual blocks in Table. [2). Therefore, it can
be suggested that residual blocks have the same or even better learning ability than the 2-layer GCN.
Interestingly, combining both the 2-layers GCN and residual blocks brings the best result as shown in
the full component model GEFA.

The model using residual blocks in both drug and protein graph shows an advantage over the model
without any residual blocks. Model having residual blocks for both drug graph and protein graph
gains 6.73% improvement in MSE over the model without residual blocks. It is interesting that
applying residual blocks only for drug graph slightly decrease model performance (0.2% decrease
in MSE and 0.1% decrease in CI). Adding back residual blocks for protein graph helps the model
to gain 2.43% improvement in MSE. Stacking residual blocks in protein graph is more crucial in
the early fusion approach as it affects not only protein graph representation but also the drug node
representation.

Finally, we compare the drug representation before and after the drug-target graph fusion. Model
using only drug representation before fusion shows comparable performance while the model using
drug representation after fusion suffers 17.24% performance loss in MSE. This indicates that drug
representation before fusion is more useful than after fusion. The reason is likely due to message
passing in graph neural network. The drug node info is updated from its neighbor residue nodes.
Therefore, this suggests that the binding process does not bring any signification change to the ligand
latent representation.

5 Conclusion

We have proposed a novel deep learning method, called GEFA (Graph Early Fusion for binding
Affinity prediction) for target-drug affinity prediction, a crucial task for rapid virtual drug screening
and drug repurposing. To improve the power of protein representation, we use self-supervised to take
advantage of a large amount of unlabeled target sequences. To address the latent representation change
due to conformation change during the binding process, the early fusion between drug and target
is proposed. Unlike the late fusion approach extracting representation separately, the early fusion
approach integrates drug representation info into protein representation learning phase. The self-



attention value of the target sequence is used as edge weight connecting drug node and residue node in
the target protein graph. Self-attention allows the model more interpretable as it shows which residues
contribute to the binding process and the level of contribution of each residue. The quantitative
experiments show that the early fusion approach has advantages over the late fusion approach. Using
the embedding feature as target node feature has advantages over using one-hot encoding. Residual
block design allows stacking multiple GCN layers for better learning representation capability.
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