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Abstract

The growing prevalence and popularity of protein structure data, both experimental
and computationally modelled, necessitates fast tools and algorithms to enable
exploratory and interpretable structure-based machine learning. Alignment-free
approaches have been developed for divergent proteins, but proteins sharing func-
tional and structural similarity are often better understood via structural alignment,
which has typically been too computationally expensive for larger datasets. Here,
we introduce the concept of rotation-invariant shape-mers to multiple structure
alignment, creating a structure aligner that scales well with the number of proteins
and allows for aligning over a thousand structures in 20 minutes. We demonstrate
how alignment-free shape-mer counts and aligned structural features, when used
in machine learning tasks, can adapt to different levels of functional hierarchy in
protein kinases, pinpointing residues and structural fragments that play a role in
catalytic activity.

1 Introduction

The dual effect of the ever-growing number of protein structures deposited in the Protein Data Bank
(Sussman et al., 1998) and dramatically improved protein structure modelling (Senior et al., 2020)
has led to an increasing number of studies incorporating structure information for predicting and
understanding protein function. Structures are essential to our understanding of protein biology as
their form dictates function and they evolve more slowly than sequences. Research questions for
which structural data may provide an answer are many and diverse - ranging from searching for
remote protein homologs with similar structural folds across the tree of life to exploring the properties
of a single protein family in a single species. These two extremes require different approaches, as both
the numbers of protein structures involved and the types of insights that can be obtained differ greatly.
In the past years, machine learning is proving itself to be crucial in solving these research questions,
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evident by its meteoric growth in the bioinformatics field. Machine learning algorithms have been
applied across divergent protein structures for tasks such as topology classification (Jain et al., 2009),
model quality assessment (Cao et al., 2017), ligand pocket prediction (Krivák and Hoksza, 2018),
and mutant stability estimation (Berliner et al., 2014). For specific protein families, structure-based
machine learning has helped with predicting SH2 domain specificity (Ferraro et al., 2006), modelling
the fitness landscape of cytochrome P450s (Romero et al., 2013), finding similarities in telomerases
(Lee et al., 2008), and predicting ligand-binding for G-protein coupled receptors (Vass et al., 2016),
among others.

Recently, we published Geometricus (Durairaj et al., 2020), a fast alignment-free protein structure
embedding approach for describing and comparing divergent proteins. Geometricus defines discrete
so-called shape-mers, analogous to sequence k-mers, using a set of rotation-invariant moments. The
embedding of a protein is then simply the count vector of these shape-mers. This alignment-free
approach accurately represents the topological aspects of proteins in machine learning for predicting
protein function. The embedding allows for interpretation by mapping predictive shape-mers back to
a set of residues in every protein. Given that applications on divergent proteins often encompass tens
of thousands of structures, Geometricus provides a good balance between speed and interpretability.

However, for more similar proteins more correspondence between individual residues is expected,
and an alignment better captures information about conservation, outliers, and functionally important
residue positions. For each residue, a variety of features can be measured according to their relevance
to the problem at hand, ranging from amino acid physicochemical properties to electrostatic energies
and, in this research, topological properties via rotation-invariant moments. These features when
aligned according to a multiple structure alignment generate a matrix that can directly be used
as input to a machine learning algorithm. The algorithm looks across the alignment positions for
patterns and correlations relevant for predicting the desired response variable. Predictions can be
understood in terms of predictive residue positions, which are now easily compared to known catalytic
residues or form hypotheses for mutagenesis studies. Gaps in an alignment are considered as missing
data, and alignment positions with too many gaps are often discarded, potentially losing out on
the predictive power of catalytically important residues split across multiple gap-filled positions.
Thus, to generate an alignment-based feature matrix from a set of similar proteins we start with our
recently released Caretta multiple structure alignment algorithm, built with the aim of generating
high-coverage alignments for use in machine learning (Akdel et al., 2020).

Computational structure modelling, both de novo and homology-based, has started to play more of
a role in structure-based machine learning research (Berliner et al., 2014; Cavasotto and Palomba,
2015), leading to datasets with up to thousands of protein structures sharing similar functionality
and structural folds. These numbers are difficult to handle with current multiple structure alignment
approaches which generally scale poorly with the number of proteins (Ma and Wang, 2014). In many
cases, this can be attributed to the initial all vs. all pairwise alignment step used to generate a guide
tree for subsequent progressive alignment steps. Multiple sequence alignment algorithms such as
ClustalW (Thompson et al., 2003), Kalign (Lassmann and Sonnhammer, 2005) and MUSCLE (Edgar,
2004) circumvent this by using alignment-free k-tuple similarity, calculated by collecting matching
subsequences of length k (k-mers) from both input sequences, instead of pairwise alignment. This
greatly reduces time complexity and allows for near-linear scaling with the number of proteins. With
Geometricus this now becomes possible for structure alignment as well, by defining shape-tuple
similarity as the collection of matching shape-mers from each protein’s structure, thus completely
avoiding the need for all vs. all pairwise structure alignment. The progressive alignment stage still
aligns pairs of proteins at a time, and unlike for sequences, the three-dimensional nature of structures
necessitates a superposition step in pairwise alignment. This step orients the input protein pair such
that distance measures between aligning residues are meaningful. We use rotation-invariant moments
to define this initial superposition step. Both of these improvements are incorporated into the Caretta
algorithm to give Caretta-shape. We demonstrate that Caretta-shape is comparable to other popular
structure alignment algorithms in terms of alignment quality and accuracy, while scaling easily to
thousands of proteins.

We use the well-studied protein kinase superfamily to demonstrate how Geometricus and Caretta-
shape can be used in unison to explore and understand structural similarities and differences between
large datasets of protein structures. We showcase both unsupervised and supervised machine learning
analyses at the superfamily, family, and subfamily levels, with emphasis on extracting structural
insights useful for downstream research.
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2 Methods

2.1 Caretta-shape

We recently released Caretta (Akdel et al., 2020), a software for multiple structure alignment aimed
at generating aligned features for use in machine learning algorithms. The advantage of Caretta in
the context of machine learning applications lies in its focus on high coverage alignments using a
novel consensus weight mechanism, which improves the information content of the aligned features.
Here we detail the modifications made to the Caretta algorithm.

2.1.1 Shape-tuple similarity for fast guide tree construction

An all vs. all similarity matrix is constructed for input proteins by calculating the Bray-Curtis
similarity between each protein pairs’ Geometricus count vectors (with k-mer size k = 20 and
resolution m = 2). The guide tree for determining the order of progressive alignments is constructed
using maximum linkage neighbor joining (Saitou and Nei, 1987) on this similarity matrix.

2.1.2 Rotation-invariant moment-based superposition

Caretta-shape replaces the signal- and secondary structure-based superposition scheme of Caretta by
moment-based superposition. For each of the two structures to be aligned, four moment invariants
are calculated for each residue with a fixed k-mer size (set to k = 20), ~M = [O3, O4, O5, F ] (named
as in (Durairaj et al., 2020)). To ensure that the four moments contribute equally to the distance
measure, each moment is normalized across both structures by subtracting the mean and dividing by
the standard deviation to form ~M ′. The two series of normalized moment invariants are then aligned
by dynamic programming using the Gaussian Caretta score:

ScoreM (i, j) = exp
(
−γm

∑
( ~M ′i − ~M ′j)

2
)

(1)

with γm = 0.6. The aligning residues are used to calculate the optimal superposition using the
Kabsch algorithm (Kabsch, 1976), after which coordinate-based superposition is performed as in
the Caretta algorithm with default parameters (γ = 0.03, gap open penalty = 1, gap extend penalty
= 0.01, consensus weight = 1). Parameter optimization for specific tasks could improve the results
presented here, but we leave this open for future exploration.

2.1.3 Benchmarking

Caretta-shape was tested on two benchmark datasets, Homstrad (Mizuguchi et al., 1998) and
SABmark-superfamily (Van Walle et al., 2004). The PDB files for these two datasets (390 sets
with 3–27 proteins each from Homstrad and 425 sets with 3-42 proteins each from SABmark-
superfamily) were obtained from mTM-align’s website (Dong et al., 2017b) and Matt benchmark
results (Menke et al., 2008) respectively, in order to directly compare results to the output of these
two tools. To this end, the Matt (Menke et al., 2008) and mTM-align (Dong et al., 2017b) alignments
for the Homstrad (Mizuguchi et al., 1998) and SABmark-Sup (Van Walle et al., 2004) datasets were
obtained from their respective websites. For 17 cases in the Homstrad dataset, mTM-align returned
alignments where at least one sequence did not match the corresponding PDB sequence. These cases
were not considered.

We report various quality metrics of multiple structure alignments obtained from the different
tools benchmarked. For both benchmark datasets we report the average (median) TM-score of the
alignment, a measure that takes into account both the structural equivalence of corresponding residues
and the overall coverage of the alignment (Zhang and Skolnick, 2004). We also report the median
percentage of positions in the alignment without gaps (gapless positions), an aspect important to
consider when using aligned features as input to machine learning algorithms, as gaps are seen as
missing data and may cause loss of information about the residue positions in which they occur. In
addition, the Homstrad dataset provides a set of manually curated reference alignments, for which
we define an accuracy score (Acc.) that measures the number of correct gapless positions found, i.e
gapless positions which are equivalent to positions in the corresponding reference alignment, divided
by the total number of gapless positions in the reference alignment.
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Kinase group CMGC TK CAMK AGC STE TJL CK1 Atypical Other
No. of proteins 2,049 2,057 811 517 455 654 209 346 648

Table 1: Number of proteins in the KinaseAll dataset across the eight major kinase groups (the rest
are labelled as "Other").

To estimate Caretta-shape running times, we chose four proteins from the SABMark dataset as
"seeds", with lengths 100, 300, 504, and 714 respectively. Each seed was used to form multiple
groups of proteins by introducing noise of up to 5 Å to each of the seed coordinates, to create a given
number of members, from 10 to 1010 in increments of 200. Each noisy structure was further rotated
by a random angle (between 0 ◦and 360 ◦) along a randomly selected axis. Caretta-shape was then
used to align these groups on a Linux workstation using a single thread.

2.2 Protein kinases

2.2.1 Data

Protein kinase PDB files with group and family annotations were collected from the kinase–ligand
interaction fingerprints and structure database (KLIFS) (Kooistra et al., 2016), resulting in 7,746
monomeric structures collectively named the KinaseAll dataset. Table 1 lists the number of proteins
in this dataset in each kinase group.

Data about active and inactive states of kinase structures was taken from work by McSkimming et al.
(2017) yielding 1,773 kinases marked as having active conformations and 1,592 structures in inactive
conformations. This dataset is referred to as the KinaseActive dataset in the text. A subset of 514
cyclin-dependent kinases from this set was further analyzed and referred to as the CDKActive dataset.

2.2.2 Shape-mers

Geometricus count vectors were calculated for kinase structures using a k-mer size k = 20 and a
resolution m = 2. These were visualized using a t-SNE embedding calculated using the scikit-learn
Python library (Pedregosa et al., 2011) with a perplexity of 30 and default parameters.

Shape-mers distinguishing a kinase group G were found as those shape-mers which are present in
> 95% of the proteins within G and whose mean count value within G is at least one more than the
mean count outside G. We visualized distinguishing shape-mers for the STE, AGC, and TK kinase
groups using three representative structures, one from each group, with PyMol (DeLano et al., 2002).
Each shape-mer can have multiple occurrences across a protein, some of which are shared across
groups and do not contribute to the distinguishing nature of the shape-mer. To overcome this, we
only visualize occurrences of a group’s shape-mer in the group’s structure which are absent in similar
positions across the two structures from the other groups.

Agglomerative clustering was performed on the count vectors, again using the scikit-learn library
(Pedregosa et al., 2011), with the Bray-Curtis affinity metric and a distance threshold of 0.63. This
threshold was decided using an all vs. all pairwise alignment for 232 kinase structures, up to 40
from each kinase family, from which we took the mean Geometricus similarity score of pairs with an
alignment TM-score > 0.95.

2.2.3 Alignment

Subsets of kinase structures were aligned using Caretta-shape with the same parameters as used
in benchmarking. For the CK2 alignment, we superposed 292 structures according to the aligning
positions and depict each structure as gray lines passing through the α-carbon coordinates using
Matplotlib (Hunter, 2007). The mean and standard deviation of all coordinates were depicted as a
black line and colored circles respectively.

2.2.4 Machine Learning

Gradient Boosting trees were used for machine learning tasks due to their high generalization potential
and capability to include missing features as a separate category. These were implemented using
the XGBoost Python library (Chen and Guestrin, 2016) with a maximum depth of 5 and remaining

4



Aligner
Homstrad SABMark-superfamily

TM-score % Gapless Acc. TM-score % Gapless
mTM-align 0.88 0.61 0.84 0.77 0.32
Matt 0.85 0.56 0.87 0.68 0.25
Caretta 0.92 0.73 0.87 0.82 0.46
Caretta-shape 0.92 0.74 0.87 0.81 0.45

Table 2: Average TM-score and percentage of gapless columns across Homstrad and SABmark-
superfamily datasets. As the Homstrad dataset also provides reference alignments, "Acc." shows the
number of gapless columns present in the corresponding reference alignment divided by the total
number of gapless columns in the reference alignment.

default parameters. Kinase active vs. inactive state classification was performed on the KinaseActive
and CDKActive datasets with five-fold cross validation. For the KinaseActive dataset consisting of
divergent proteins, Geometricus count vectors were used as features. For the CDKActive dataset
consisting of the structurally similar cyclin-dependent kinases, aligned moment invariant values were
used.

In both cases, feature importance values of each predictor were averaged across cross-validation folds
and summed across features. The top 2 predictive shape-mers from the KinaseActive classifier and top
10 predictive residues from the CDKActive classifier are considered in the text. Predictive shape-mer
occurrences were mapped back to their corresponding residues. Predictive shape-mer residues and
predictive residues from the alignment-based approaches were visualized on representative structures
using PyMol (DeLano et al., 2002).

3 Results

3.1 Fast and accurate multiple structure alignment with rotation-invariant moments

Most machine learning algorithms accept a tabular, fixed dimensional matrix as input, with rows
representing individual data points and columns representing features measured across all data points.
For proteins sharing high structural similarity this can be accomplished by organizing residue-level
features in the order dictated by a multiple structure alignment. Desired properties of this alignment
would be high accuracy in terms of structural equivalence of residues, high coverage in order to
include as many relevant residue positions as possible instead of just highly conserved positions, and
high speed to be able to align and re-align large datasets of proteins in typical parameter selection and
validation pipelines. Here we demonstrate that Caretta-shape possesses all three of these properties.

We benchmarked Caretta-shape with the Homstrad (Mizuguchi et al., 1998) and SABMark-
superfamily (Van Walle et al., 2004) alignment datasets, and compared against two popular structure
aligners, Matt (Menke et al., 2008) and mTM-align (Dong et al., 2017a). Table 2 shows average
quality metrics across these datasets and demonstrates that Caretta-shape returns high quality, accurate
alignments with high coverage. The pairwise alignment step in Matt and mTM-align is prohibitive,
with runtime complexities of O(n2l3log(l)) and O(n2l2) respectively (where n is the number of
proteins and l is the length of the longest protein). mTM-align’s authors mention that 80-90% of
their running time is spent in this step (Dong et al., 2017a). Shape-tuple similarity reduces this
step to O(n2) in Caretta-shape. The entire Homstrad dataset takes only 4 minutes to align with
Caretta-shape, compared to half an hour using the old Caretta algorithm and mTM-align, both of
which are 10-15 times faster than Matt (Dong et al., 2017a).

Figure 1 shows the runtime of Caretta-shape on a single thread across synthetic datasets with differing
lengths and numbers of proteins. Over a thousand medium-length proteins can be aligned in as little
as 20 minutes on a personal computer with a single thread. Further speed improvements such as those
employed by multiple sequence alignment algorithms (Sievers et al., 2011) or by the use of graphical
processing units (GPUs) could extend Caretta-shape to aligning hundreds of thousands of protein
structures in hours; these approaches are left for further exploration.
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Figure 1: Running time in minutes of Caretta-shape on synthetic datasets with differing number of
proteins and proteins with different lengths.

3.2 Structure-based exploration of protein kinases

In the past decades, protein kinases have become an alluring target for drug discovery due to the
important role they play in key signal transduction pathways. These phosphotransferase enzymes
mediate the transfer of the phosphate moeity from high-energy molecules such as ATP to their
substrates, and are classified into broad groups based on the substrates they act on. Their popularity
has led to a boom in the number of experimentally solved kinase structures with different ligands and
inhibitors bound. The kinase–ligand interaction fingerprints and structure database (KLIFS) (Kooistra
et al., 2016) now contains 7,746 monomeric structures covering 308 kinases across 8 groups and
3,341 unique ligands.

This superfamily as a whole has divergent protein structures for which only a small 85-residue
catalytic segment can successfully be aligned (Van Linden et al., 2014). However, individual kinase
families each consisting of up to a thousand structures, share common structural folds that lend
well to alignment. With a combination of Caretta-shape and Geometricus we are able to pinpoint
differences between kinase groups, align kinase families, and predict conformational change across
and within kinase families all in a matter of an hour.

3.2.1 Divergent groups of proteins

Figure 2A shows a t-SNE embedding of Geometricus shape-mer count vectors of all 7,746 kinase
monomers in the KinaseAll dataset, colored by the group in which they belong. Clear separation is
seen between groups, with smaller clusters visible within each group. These mostly correspond to
the kinase families, some of which are labelled in the figure. In Figure 2B, for three kinase groups
we look at some shape-mers present in the members of that group and absent in the others. Many of
these regions in the structure do not lie in the alignable catalytic stretch and thus would not have been
found using alignment-based methods.

3.2.2 Similar families of proteins

By clustering Geometricus count vectors, we arrive at clusters of proteins displaying high structural
similarity which are better suited to alignment. Table 3 shows clusters with > 100 proteins obtained
after performing agglomerative clustering with a distance threshold derived from comparison of
Geometricus similarity scores with pairwise alignment TM-scores (described in Methods). Each
cluster only contains proteins from a single kinase group and many are dominated by a single kinase
family (labelled in Figure 2A), demonstrating that Geometricus similarity scores can be used to
assign proteins to functional groups when annotations are lacking. We used Caretta-shape to align the
proteins within each cluster. The average TM-score of each cluster alignment (reported in Table 3) is
very high, confirming their structural similarity. Figure 3 shows the coordinate standard deviations
for the CK2 alignment, demonstrating how alignments can be used to assess residue conservation
and pinpoint outliers or sub-groups.
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Figure 2: A. t-SNE dimensionality reduction of Geometricus shape-mer count vectors for 7,746
kinase monomers, colored by kinase group. 19 kinase families, corresponding to the clusters in
Table 3, are labelled. B. Shape-mers found in one group and absent in the others, colored black for
representative structures of the STE (PDB ID: 4USE), AGC (PDB ID: 3OCB), and TK (PDB ID:
6AAH) kinase groups.

Figure 3: 292 CK2 kinase structures superposed according to their Caretta-shape alignment, each
depicted as gray lines passing through the α carbon coordinates. The mean is depicted as a black
line with each residue position colored according to its standard deviation. The blue box marks
a well-conserved region, green boxes mark regions showing subgroups where different structures
follow different distinct paths (visible in lighter gray), and red boxes mark outlier regions where each
protein has highly differing coordinates.
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No. of proteins Avg. TM-score Group Top family Purity (%)
741 0.96 CMGC CDK 82
661 0.96 CMGC MAPK 100
570 0.94 TK Tec 28
454 0.95 TK JakA 59
346 0.95 TK FGFR 61
292 0.99 CMGC CK2 100
288 0.94 TK EGFR 100
248 0.95 CMGC DYRK 64
230 0.96 AGC PKA 62
176 0.99 CAMK PIM 100
163 0.96 CAMK DAPK 73
157 0.98 TKL RAF 100
157 0.98 TKL IRAK 100
141 0.98 TKL STKR 100
139 0.98 CAMK CAMKL 100
137 0.96 STE STE20 100
125 0.98 CK1 CK1 91
117 0.98 AGC DMPK 100
108 0.96 TK Src 66

Table 3: Clusters of kinases obtained from Geometricus count vector clustering, also labelled in
Figure 2A. For each cluster we report the average TM-score of its Caretta-shape alignment, the group
in which its members belong, and the most frequent family along with the percentage of the family’s
occurrence in the cluster (purity).

3.3 Kinase activity from different perspectives

The protein kinase domain can undergo dramatic conformational changes when reacting to regulatory
signals in signaling pathways. These changes are controlled by protein-protein interactions, phospho-
rylation, and ligand binding (Johnson et al., 1996). Drug discovery efforts often aim to target specific
kinase conformations and thus benefit from an understanding of conformational activation across
kinases and how this activation differs across the different kinase groups and families.

Using a dataset of 3,365 kinase structures labelled as being in active or inactive conformations
(McSkimming et al., 2017), we aim to classify a structure as belonging to one of these two states as
well as pinpoint structural elements responsible for the change. We demonstrate how the alignment-
free Geometricus is well-suited to tackle such classification problems across diverse proteins, such as
those belonging to the different kinase groups, and Caretta-shape alignment allows for zooming into
the idiosyncrasies of a single family.

3.3.1 Activation across divergent kinases

To inspect activation across all kinases, we trained a Gradient Boosting classifier on Geometricus
embeddings of the KinaseActive dataset. The five-fold cross validation accuracy of this classifier was
96± 0.01%. Figure 4A shows the top two predictive shape-mers and their prevalence across active
and inactive kinases. These shape-mers are also depicted on an example kinase structure (PDB ID
1E9H). One shape-mer, in dark blue, is localized in the DFG motif which lies in the well-established
activation segment (McSkimming et al., 2017). Another, in green, lies in the linker region connecting
the activation segment to the αF-helix which acts as an organizing hub in the activation process
(Kornev et al., 2008). The DFG motif shape-mer is repeated (in light blue) but since Geometricus
works with counts we cannot distinguish the true predictive motif using a single structure. More
clarity is obtained when looking across multiple structures, as the dark blue occurrence is present in
many structures in the active conformational state while the light blue occurrence is not.

3.3.2 Activation in the cyclin-dependent kinase family

While the Geometricus approach gives us good prediction performance and pinpoints critical struc-
tural regions, it misses some structural regions that are specific to certain families. For instance,
the cyclin-dependent kinase (CDK) family is dependent on the formation of a CDK-cyclin com-
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Figure 4: A. Occurrences of two shape-mers (shape-mer 1 in dark and light blue, shape-mer 2 in
green) found predictive for conformational state classification on a representative kinase structure
(PDB ID: 1E9H). The DFG motif and αF-helix linker are labeled. The percentage of proteins
containing each shape-mer and the average number of times the shape-mer appears per protein across
the active and inactive kinases is shown. B. Top ten predictive residues for cyclin-dependent kinase
conformational state classification shown along with the position of cyclin (light blue). Residues
near the DFG motif and αF-helix linker are colored blue and green respectively, while the remaining
predictive residues are colored black. The αC-helix in the CDK-cyclin interface is labelled.

plex. Upon binding, cyclin induces conformational changes in the kinase domain that allow for
autophosphorylation of the activation segment to produce a fully active kinase (Russo et al., 1996).
Thus, CDKs are further allosterically regulated through cyclin-binding, an aspect not seen in our
coarse-grained classifier trained across all kinases. To analyze a specific subfamily such as CDKs, an
alignment based approach can be beneficial due to the high structural similarity between proteins and
expected residue correspondences. We create a Caretta-shape alignment across 514 CDKs, resulting
in an alignment of 399 residues with an average TM-score of 0.96. A Gradient Boosting classifier is
trained on the aligned moment invariant values of each CDK, resulting in a very high accuracy of
99%. Figure 4B depicts the top 10 predictive residues. While some residues are again found in the
DFG motif and αF-helix linker regions, residues in the αC-helix which forms part of the cyclin-CDK
interface are also found as predictive, indicating that this predictor picks up CDK-specific patterns
relevant for kinase conformational change.

4 Conclusion

With growing numbers of experimentally solved protein structures and proteins capable of being
computationally modeled, structures are seeing increasing use in machine learning applications. To
that end we present Caretta-shape, a very fast and accurate multiple structure alignment algorithm
based on the concept of rotation-invariant moments, aimed at generating aligned structural features
for machine learning.

Depending on the similarity between proteins under study, an alignment-free or alignment-based ap-
proach is preferred and each presents its own advantages and insights. We adapt these two approaches
to the protein kinase superfamily, which consists of structurally divergent protein groups as well
as more similar protein families. We use machine learning to tackle active/inactive conformational
state prediction across all kinase families with Geometricus and across the cyclin-dependent kinase
family with Caretta-shape alignments. These two approaches lead to the exploration of different
aspects of catalytic mechanisms: one aspect explains commonalities within all proteins in this diverse
superfamily, and the other zooms in on peculiarities displayed by a single family.

Computational structure modelling is capable of expanding datasets of proteins into the thousands.
Once the expensive but automated modelling steps are complete, analyses similar to the ones presented
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here, both unsupervised and supervised, can be carried out with comparable ease allowing for fast
iteration and adaptive exploration of protein biology.

Broader Impact

The research presented here includes a novel multiple structure alignment algorithm and a demon-
stration of recently developed algorithms for analysing protein structures with machine learning.
Researchers in structural bioinformatics and enzymology may benefit from this work for obtaining
structural insights from their data. The ideas discussed also form a fertile basis for more complex
algorithms that leverage the increasing amounts of data and recent advances in machine learning and
deep learning techniques aimed at such structured, high-dimensional data.
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