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Abstract

Cryo-EM reconstruction algorithms seek to determine the 3D electron scattering
density from a series of noisy, unlabeled 2D projection images captured with an
electron microscope. Although 3D reconstruction algorithms typically model the
3D volume as a generic function parameterized as a voxel array or neural network,
the underlying atomic model of the protein of interest places well-defined physical
constraints on the reconstructed structure. In this work, we exploit prior information
provided by an atomic model to reconstruct distributions of 3D structures from a
cryo-EM dataset. We consider generative models for the 3D volume based on a
coarse-grained model of the protein’s atomic structure, with radial basis functions
used to model atom locations and their physics-based constraints. Although the
reconstruction objective is highly non-convex when formulated in terms of atomic
coordinates (similar to the protein folding problem), we show that gradient descent-
based methods can reconstruct a continuous distribution of atomic structures when
initialized from a structure in its support. This approach is a promising direction
for integrating biophysical simulation, learned neural models, and experimental
data for 3D protein structure determination.

1 Introduction

Single particle cryo-electron microscopy (cryo-EM) is a powerful experimental technique for structure
determination of proteins and macromolecular complexes at near-atomic resolution [1]. In this
technique, an electron microscope is used to image a purified sample of the molecule of interest
suspended in vitreous ice. Initial processing of the resulting micrograph produces a dataset of
104−7 2D projection images, where each image captures a unique molecule suspended in a random,
unknown orientation. Reconstruction algorithms are then used to computationally infer the 3D
protein structure from the dataset. Unlike structure determination through x-ray crystallography,
cryo-EM is able to determine the structure of molecules that are not amenable to crystallization,
including those that adopt an ensemble of heterogeneous conformational states. Thus, cryo-EM
is in principle capable of modeling the entire ensemble of conformational states in a sample and
probing the dynamic conformational landscape of proteins. To date, this promise has been limited by
a lack of computational techniques for dealing with heterogeneous cryo-EM data, but promising new
approaches have recently been developed to reconstruct heterogeneous structures [2, 3, 4].

Computational processing of cryo-EM datasets consists of several distinct stages (Figure 1). First,
the noisy micrograph image is segmented, where bounding boxes containing individual molecules
(i.e. particles) are identified and extracted (i.e. particle picking) [5]. Next, a 3D cryo-EM density
volume, or distribution of 3D volumes that represent the molecule’s electron scattering potential is
reconstructed from the 2D projections[6]. Finally, an atomic model is built into the resulting 3D
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Figure 1: Structure determination via cryo-EM. Schematic of cryo-EM reconstruction (A → B) and atomic
model fitting (B → C). In this work, we investigate the possibility of fitting the atomic protein structure directly
during the reconstruction process. Dataset from Walls et al. [13].

volume either de novo or fit starting from a related model, typically with the help of automated tools
[7, 8, 9, 10, 11, 12].

In this work, we investigate the possibility of fitting the atomic protein structure directly during the
reconstruction process. We have two motivations for this. First, atomic fitting is a labor-intensive
step in cryo-EM post-processing, and in particular it is not clear how to perform atomic fitting for
models of distributions of protein conformations learned during reconstruction with new tools such
as cryoDRGN [2]. Second, modeling the atomic structure of the 3D volume provides a strong prior
over structures. In fact, in many cases the protein sequence and an approximate reference structure
are known beforehand, strongly constraining the space of feasible 3D volumes. These structural
priors are especially important for models of heterogeneous distributions of molecules, because they
constrain the conformational dynamics to those that approximate realistic protein motions. Without
such priors, it is common to observe artifacts in the motion of the protein, e.g. mass appearing and
disappearing between two distinct conformations with rarely-sampled transition states.

To this end, we propose a reconstruction process based on a coarse-grained atomic model for the
cryo-EM volume. The model fits parameters including atomic coordinates, to maximize the likelihood
of the dataset images under a generative model that maps atomic structures to cryo-EM images. When
initialized from an approximate reference structure for the protein of interest, this approach is able to
learn both homogeneous structures and heterogeneous ensembles from synthetic cryo-EM images.

2 Background

A cryo-EM experiment produces a dataset of 104−7 noisy 2D projection images, each containing a
unique molecule captured in a random, unknown orientation. The goal of cryo-EM reconstruction is
to infer the 3D density volume V : R3 → R that gave rise to the imaging dataset X1, ..., XN . As
cryo-EM images are integral projections of the molecule in this imaging modality, 2D images can be
related to the 3D volume by the Fourier slice theorem [14], which states that the Fourier transform of
a 2D projection is a central slice from the 3D Fourier transform of the volume. Traditional methods
approximate the volume as a voxel array V̂ (k) in Fourier space [6].

To recover the desired structure, cryo-EM reconstruction methods must jointly solve for the unknown
volume V̂ and image poses φi = (Ri, ti), where Ri ∈ SO(3) and ti ∈ R2 are the 3D orientation of
the molecule and in-plane image translation, respectively. Expectation maximization and simpler
variants of coordinate ascent are typically employed to find a maximum a posteriori estimate of V̂
marginalizing over the posterior distribution of φi’s. The reader is referred to [15] for further details
on traditional, homogeneous cryo-EM reconstruction method.

A unique advantage of cryo-EM is its ability to image heterogeneous molecules. Heterogeneous
reconstruction algorithms aim to reconstruct a distribution of structures from the dataset. A standard
approach involves extending the generative model to assume images are generated from a mixture
model of K volumes V1, ..., VK [16, 17]. More recently, neural models, such as cryoDRGN have
been used to reconstruct heterogeneous ensembles of particles from cryo-EM data [2]. CryoDRGN
represents a continuous n-dimensional distribution over volumes as a function V̂ : R3+n → R
approximated by a positionally-encoded MLP [2]. In cryoDRGN and in other advanced reconstruction
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methods [18, 3, 19, 4], to simplify reconstruction, they find it sufficient to use poses φ computed
using a traditional reconstruction method, and focus on the volume reconstruction.

3 Method

The central contribution of this work is a cryo-EM density model, V (r|θ), that is parameterized in
terms of coordinates for a coarse-grained atomic model given a known atomic reference structure
(Figure 2A). In this coarse-grained model, each amino acid is represented by two Gaussian radial
basis functions (RBFs), one representing the backbone and the second representing the sidechain.
Each RBF is parameterized by (µi, σi, ai), where µi is the position of the ith RBF; ai is the amplitude
of the ith RBF; and σi is the width of the ith RBF. We tie ai = a0Zi where a0 is a global learned
amplitude constant, and Zi is the total number of electrons in the fragment represented by RBF i.
Furthermore, we tie all σi to the same value σ. Thus, the full RBF model has 3K + 2 parameters,
where K is the total number of amino acids in the protein complex. The cryo-EM density can be
computed as a function of these parameters as:

V (r) =
∑
i

(2πσi)
−3/2ai exp

(
−||r− µi||2

2σ2
i

)
(1)

As described in Section 2, reconstruction is performed in the Fourier domain. This makes the choice
of Gaussian RBFs convenient, as V can be computed efficiently in Fourier space1:

V̂ (k) =
∑
i

aie
−2πiµi·k exp

(
−π2k2σ2

i

2

)
(2)

To impose physical constraints on the RBF model, we add a set of harmonic bond terms B between
consecutive backbone RBF centers. Each bond term (i, j, k, l) ∈ B is specified by a pair of RBF
indices i, j and a bond strength k. The bond length l is set to 3.8 Å, the distance between protein Cα
backbone carbons.

We constrain the side-chain RBFs to be located close to their backbone RBF using one-sided harmonic
constraints C. These are similar to the bond terms, but only induce a loss when the distance between
RBF centers exceeds the max length l. We set l to the maximum distance between a backbone
C-alpha carbon and it’s side chain center of mass observed in the reference structure.

For homogeneous reconstruction, we fit {µi}, σ, a0 directly using stochastic gradient descent (SGD).
The overall loss function, given a set of N images X with poses φ, bond terms B and side-chain
constraints C is:

L(µ, σ, a0|X) =
1

N

∑
(x,φ)∈X

||X̂(φ|µ, σ, a0)−X||2 +
∑

(i,j,k,l)∈B

k(||µi − µj || − l)2

+
∑

(i,j,k,l)∈C

k max (||µi − µj || − l, 0)2
(3)

For heterogeneous reconstruction, we learn a continuous latent variable model of conformational
heterogeneity expressed through motion of RBF centers (Figure 2B). Unlike standard heterogeneous
cryo-EM reconstruction algorithms that use an unconstrained volume representation (e.g. voxel arrays
or positionally encoded MLPs), the RBF model constrains the effect of the latent degrees of freedom
to heterogeneity in the underlying atomic structure. An image encoder E with parameters θE predicts
a latent z ∼ E(X̂|θE); A decoder network D with parameters θD predicts a z-dependent translation
of the RBF centers µhet(z) = µ+D(z|θD). We optimize µ, σ, a0, θD, θE together end-to-end with
SGD.

1Incidentally, projections of Gaussian kernels can also be computed analytically in real space, obviating the
need for the Fourier slice theorem altogether. This real space formulation allows for algorithms that scale better
with the number of RBFs since the RBFs are localized in real space, allowing for spatial decomposition via
gridding, KD-trees, etc.
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Figure 2: A) Generative model for reconstruction. The 3D cryo-EM density is modeled as a set of Gaussian
RBFs, two for each AA in the reference structure. One RBF represents the backbone (blue) and one represents
the sidechain (red). Backbone RBFs are connected with harmonic bond terms B, and sidechain RBFs are
connected to their backbone with max-distance harmonic constraints C. B) Architecture for heterogeneous
reconstruction. We use a VAE to learn z-dependent offsets of RBF centers µi, given an unlabelled imaging
dataset of image, pose pairs (X̂i, φi).

A major shortcoming of this atomic reconstruction approach is the existence of many local minima
of the loss function that do not approximate the true atomic coordinates. This is in contrast to
voxel-based models, where SGD converges to the global minimum of the convex loss given the poses.
We address the local minima problem primarily by initializing RBF centers µi from a reference
structure that is a close approximation of the imaged structure (homogeneous) or some point on
the distribution of structures (heterogeneous). Such reference structures are often available when
studying a variant of a known structure, or heterogeneous protein dynamics.

4 Results

Here, we present results for our RBF model in reconstructing coarse-grained atomic structures from
synthetic cryo-EM image data. We first explore the effect of reference structure initialization in
homogeneous reconstruction, when initialized from either an approximate reference structure (fitting),
the exact structure (cheating), or from randomly initialized locations (folding). We then turn to
heterogeneous cryo-EM datasets, where we evaluate the ability of the RBF model to reconstruct
continuous distributions of structures and their atomic coordinates. Finally, we assess choices in the
design of the RBF model by ablating key components in the homogeneous setting.

Datasets. We generate homogeneous and heterogeneous cryo-EM datasets using a 141-residue atomic
model (PDB 5NI1) as the ground truth structure. To generate homogeneous data, we simulate 50,000
noisy projection images based on the cryo-EM image formation model. To model heterogeneity, we
introduce a bond rotation in the backbone of 5ni1 to create a continuous 1D motion, and generate
cryo-EM images sampling along the ground truth reaction coordinate. Further details on dataset
generation are given in the Appendix.

Architecture and training. For all experiments, we train for 10 epochs using the Adam optimizer
in minibatches of 8 images and a learning rate of 1e-4. We initialize σ and a0 to 3.71 and 0.1, and
perform one epoch of ‘warm-up’ to refine these global parameters after which we reset the atomic
coordinates to their initial values. For homogeneous reconstruction, we directly optimize all RBF
parameters. For heterogeneous reconstruction, we use a VAE to predict the z-dependent offsets of
the RBF centers from their reference values. Both the encoder and decoder are 3-layer MLPs of
width 256 and residual connections, and a latent dimension |z| of 1. We use ground-truth poses φ for
training. In real applications, the poses would be inferred from traditional cryo-EM tools [20, 21, 22].

4.1 Homogeneous reconstruction

To explore the effect of reference structure initialization, we compare the reconstruction accuracy of
the RBF model when initialized from the ground truth coordinates and from three alternate starting
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configurations: 1) an approximate reference structure generated by evolving the system under a
molecular dynamics simulation, 2) the ground truth structure with 6 Å uniform noise added to the
ground truth coordinates of each Cα, and 3) a random initialization of each Cα RBF in the 643 region
in the center of the box. Side-chain RBFs are initialized to their corresponding Cα RBF centers.

We report the root-mean-square-error (RMSE) of model backbone coordinates to the Cα of the true
structure, the percent of Cα backbone atoms predicted within 3 Å of the true structure, and the
normalized mean-square-error (NMSE) of the reconstructed volume to the true structure (Table 1).
We find that our atomic model is quite sensitive to initialization. While the model performs adequately
when initialized at nearby reference structures, it makes some mistakes due to local minima, and
performs much better when initialized with the ground truth coordinates. When initialized from
random coordinates, SGD is unable to recover the ground truth atomic coordinates whatsoever.
Instances of atomic local minima include ‘mismatched buttoning’ of the amino acid backbone in the
volume, as well as incorrect tracing of the protein backbone through the volume (Figure S2).

Initialization Initial RMSE (Å) Cα RMSE (Å) % within 3Å Volume NMSE
Exact 5NI1 0.00 0.843 99.29% 0.28
Approximate 5NI1 5.15 3.81 77.30% 0.32
5NI1 + Uniform[6 Å] 6.50 3.19 53.19% 0.35
Random 34.87 17.16 2.12% 0.43

Table 1: Comparison of different choices of initial atomic coordinates when training the model.

4.2 Heterogeneous reconstruction

As opposed to the previous section where we reconstruct a homogeneous structure from a nearby
reference structure, here we attempt to reconstruct a continuous manifold of structures from a
reference structure lying at one point in the distribution. We consider a dataset consisting of a 1D
continuous motion of the 5ni1 protein. A bond in the center of the protein is rotated leading to a
large-scale global conformational change (Figure S1). We initialize the RBF model to the structure at
one end of the reaction coordinate, and train on the imaging dataset with ground truth poses.

The RBF model is able to correctly reconstruct the full distribution of this large conformational
change. In both datasets, the latent encodings of the images is well correlated with the true reaction
coordinate (Figure 3, left), and the RBF atomic coordinates from traversing the latent space nearly
exactly reconstruct the underlying protein motion (Figure 3, right).

As a baseline, we perform heterogeneous reconstruction with cryoDRGN, which learns an uncon-
strained neural representation of cryo-EM volumes (Appendix A). Similarly, we provide the ground
truth poses and train a 1-D latent variable model. While the latent space is well correlated with the
ground truth motion, without the regularization provided by the structural RBF prior, the reconstructed
volumes contain noise and blurring artifacts in the mobile region (Figure 3, bottom).

We also measure reconstruction accuracy across the reaction coordinate for four distributions of
images across the reaction coordinate: a uniform distribution, two non-uniform distributions corre-
sponding to an energy barrier; and two discrete clusters with no images in the middle (Figure 4).
For each value of the reaction coordinate, we approximate the atomic coordinates using the median
latent from the images at that coordinate, and measure its Cα RMSE with the ground truth. We see
that when there is even a small probability mass across the reaction coordinate (top row), the atomic
model learns the full distribution of conformations with high accuracy. If transition states are nearly
or completely unobserved in the image distribution (bottom row), reconstruction accuracy is poor.

4.3 Model ablations

Using the homogeneous dataset and an initialization from the approximate 5NI1 structure, we explore
various choices in design of the RBF model by ablating the side chain RBF, bond constraints, and
the cryo-EM supervision (Table 2). We find that removing the sidechain RBFs and modeling each
amino acid as a single RBF slightly degrades quality, while removing the internal bond terms leads
to a dramatic degradation. Atomic accuracy is substantially worse but not completely degraded
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Figure 3: Heterogeneous reconstruction results of an unlabeled dataset containing a uniform distribution of
images across the ground truth reaction coordinate. Predicted 1D latent encoding z plotted against the ground
truth reaction coordinate (left), and reconstructed structures at the specified values of z. Our RBF model
directly reconstructs atomic coordinates (top). The unconstrained neural volume representation (cryoDRGN)
contains noise and blurring of moving atoms in the reconstructed volumes (bottom) and does not produce atomic
coordinates.

Figure 4: Cα RMSE (blue) for heterogeneous reconstruction of a large synthetic conformational change of
5ni1, with different distributions of images (red) across the reaction coordinate. The reference structure used for
initialization is the ground truth atomic structure at reaction coordinate 0.

even when ignoring the cryo-EM images (due to the initialization); however, as expected there is
low overlap with the true volume in this case. We expect the volume NMSE to be higher than
unconstrained approaches (e.g. cryoDRGN), as the coarse-grained RBF model does not exactly
match the underlying all-atom generative model even with correct coordinates (Figure S3).
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Model Cα RMSE (Å) % within 3Å Volume NMSE
Full Model 3.81 77.30% 0.32
No Sidechain RBFs 4.10 70.21% 0.49
No Bonds 10.42 37.59% 0.36
No Cryo-EM Loss 5.15 74.47% 1.82

CryoDRGN N/A N/A 0.08

Table 2: Ablations of model components. We remove the sidechain RBFs, the bond terms between RBFs, and
the cryo-EM reconstruction loss; each degrades the quality of reconstruction.

5 Discussion

This work proposes a coarse-grained atomic generative model from cryo-EM reconstruction. Our
experiments suggest that such models are a promising direction for incorporating structural priors
into cryo-EM reconstruction, especially for heterogeneous structures. However the experimental
validation is preliminary: we worked entirely with synthetic cryo-EM datasets of a small protein
using exact poses. Follow-up work is required to understand how these techniques behave with real
cryo-EM images and volumes, using realistic protein complexes of interest, and using approximate
poses generated by existing tools. For larger protein complexes, follow-up work will investigate
whether a coarser model granularity may be more appropriate, especially when modeling large-scale
heterogeneous dynamics.

Results on homogeneous datasets suggest that local minima in optimization space are a major problem
for this class of methods if coordinates are not initialized very close to the ground truth structure.
These local minima problems could potentially be ameliorated with a combination of improved
modeling of structural priors such as bond terms and steric interactions, and optimization methods
such as Hamiltonian dynamics or Markov Chain Monte Carlo that can escape local minima. There is
a rich literature on these topics in the domain of molecular dynamics simulation which could carry
over to cryo-EM reconstruction.

However, results on heterogeneous datasets suggest that we can correctly learn distributions with large
continuous conformational changes when initialized from some structure in the distribution, even
for structural changes that are too large to be modeled correctly if only the endpoint structures are
observed (as in homogeneous reconstructions). Follow up work is required to more fully characterize
exactly when neural models of heterogeneous structures converge to the correct distribution.
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Figure S1: Ground truth structures of the heterogeneous datasets simulating a 1D continuous motion transition-
ing from left (5NI1) to right. All generated structures are shown in the center.

A Appendix

A.1 Dataset generation

Synthetic cryo-EM datasets were generated from an atomic model of PDB 5NI1 according to the
image formation model as follows: starting from the deposited atomic model of 5NI1, the 141-residue
A-chain subunit of the complex was extracted. A cryo-EM volume was generated with the ‘molmap‘
command in Chimera [23] at 3 Å resolution and grid spacing of 1 Å. The volume was zero-padded
to a cubic dimension of 1283. 50,000 projection images were generated at random orientations of
the volume uniformly from SO(3). Images were then translated in-plane by t uniformly sampled
from [−10, 10]2 pixels. We omit the application of the CTF for simplicity in this synthetic dataset.
Gaussian noise was added leading to a signal to noise ratio (SNR) of 0.1, a typical value for cryo-EM
image data. As real cryo-EM datasets have variable resolution and thus resolvability of the atomic
structure, we investigate the effect of volume resolution and the included atoms in generating the
dataset’s ground truth volume/images (Table S1). We find that our atomic modeling is quite robust to
the resolution and which atoms we model in the synthetic data, which suggests it may transfer well to
real cryo-EM images.

To generate the heterogeneous datasets, a dihedral angle in the backbone of the atomic model was
rotated through 0.25 radians and 50 structures were sampled along the motion (Figure S1). For
simplicity of heterogeneous dataset generation, we use the 5NI1 atomic models with Cα backbone
atoms only. We generate multiple datasets of 50k total images following the above image formation
process, each with a different distribution of images along the reaction coordinate as shown in Figure
4.

Modeled Atoms Resolution Cα RMSE (Å) % within 3Å

Cα 3Å 3.21 80.8%
Cα & Cβ 3Å 3.29 77.3%
All Atoms 3Å 3.75 78.0%

Cα 5Å 3.20 80.9%
Cα & Cβ 5Å 3.87 73.1%
All Atoms 5Å 3.80 74.5%

Cα 8Å 3.80 74.5%
Cα & Cβ 8Å 3.87 73.8%
All Atoms 8Å 4.20 78.7%

Table S1: Homogeneous reconstruction model accuracy for different ways of generating the dataset of cryo-EM
images (resolution and which atoms are included). The model performs similarly across these choices. For other
homogeneous experiments, we use all atoms at 3Å. For heterogeneous experiments, we use Cα at 3Å.
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Figure S2: Reconstructed atomic structures with RBF centers initialized either 1) at the exact ground
truth values of 5NI1, 2) at an approximate structure generated from evolution by molecular dynamics,
3) at 5NI1 coordinates randomly perturbed by Uniform[6 Å] noise, or 4) from random initial values.
Structures are colored by Cα RMSE to the ground truth structure (top left).

A.2 cryoDRGN baseline

For homogeneous reconstruction, we train a cryoDRGN positionally-encoded 3-layer MLP of width
256 for 20 epochs. For heterogeneous reconstruction, both the encoder and decoder networks are
3-layer MLPs of width 256, and are trained for 20 epochs.
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Figure S3: Ground truth and reconstructed volumes with a neural network representation of density
(cyroDRGN) and with our RBF model initialized from exact coordinates. The RBF volume recon-
struction is somewhat worse than that of cryoDRGN because even with exact coordinates, it cannot
match the all-atom generative model.
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