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Abstract

The SARS-COV-2 pandemic has created a global race for a cure. One approach
focuses on designing a novel variant of the human angiotensin-converting enzyme
2 (ACE2) that binds more tightly to the SARS-COV-2 spike protein and diverts
it from human cells. Here we formulate a novel protein design framework as a
reinforcement learning problem. We generate new designs efficiently through
the combination of a fast, biologically-grounded reward function and sequential
action-space formulation. The use of Policy Gradients reduces the compute budget
needed to reach consistent, high-quality designs by at least an order of magnitude
compared to standard methods. Complexes designed by this method have been
validated by molecular dynamics simulations, confirming their increased stability.
This suggests that combining leading protein design methods with modern deep
reinforcement learning is a viable path for discovering a Covid-19 cure and may
accelerate design of peptide-based therapeutics for other diseases.

1 Introduction
The ongoing worldwide Covid-19 pandemic is compelling researchers to explore multiple routes to
develop a cure. While the creation of small molecule drugs remains a promising path [24, 31, 26],
another possibility is the design of a novel peptide that would bind to and neutralize the SARS-CoV-2
spike protein [13, 9]. To replicate, the virus needs to penetrate the cell by hijacking its active transport
processes. It does so through a specific set of interactions with the cellular receptor. For SARS-CoV
and SARS-CoV-2, it is the spike protein that mediates the cell infection through the binding of its
receptor-binding domain (RBD) to the angiotensin converting enzyme 2 (ACE2) on the surface of
the cell [28]. SARS-COV-2 only recently crossed the species barrier into humans and developed
an affinity towards ACE2, meaning its binding is likely to be suboptimal. A new binder could be
engineered to neutralize the SARS-CoV-2 virus by inhibiting its attachment process to the native
ACE2. To do so, it would need to be more specific for SARS-COV-2, i.e. have a higher binding
affinity than ACE2, while simultaneously remaining sufficiently similar to the native variant in order
to be safe for humans. The resulting binder would keep SARS-COV-2 outside the human cells,
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making it more visible for recognition by the immune system. The interface between ACE2 and the
SARS-COV-2 spike protein consists of 34 amino acids, with 20 residues possible at each position.
Designing the interface of a novel variant of ACE2 therefore results in a search space over amino
acids in the order of 2034, or equivalently, 1045.

To explore this research direction, we have developed a novel protocol, which given a protein complex
structure, optimizes the binding interface. This is achieved through the combination of computational
structural biology and deep reinforcement learning (RL). The protocol maintains the stability of the
interacting partners, and optimizes binding while minimizing the number of redesigned positions,
leading to designs that are more stable, and due to minimal, unobtrusive quality of the design, less
likely to either misfold, or elicit an immune reaction in vivo. While it is not realistic to directly
estimate the binding affinity between interacting partners, one can relatively well approximate the free
energy of the system. We leverage the industry standard methodology implemented in the ROSETTA
suite [2, 6] to evaluate quality of binding through a combination of standard terms present in the
ROSETTA energy function.

2 Related work
To the best of our knowledge, the only work applying Reinforcement Learning to protein design can
be found in [3]. The authors propose an RL formulation, but postulate that the evaluation cost of
the scoring function hinders its applicability. Consequently, to improve the sample efficiency, they
developed a model-based approach. The scoring function is approximated using an ensemble of
models of various nature and capacities. This reduces the estimation errors, that could have been
exploited by the agent. We differ from the resulting method (DynaPPO) not only in terms of the
problem formulation – more expressive action space and initial state space, which increase sample
efficiency – but also in terms of the scoring function, which balances accuracy and speed, obviating
the need for approximation with ensemble models.

3 Problem Formulation

INITIAL
SEQUENCE

FINAL
SEQUENCE

AT EACH TIMESTEP

REPEAT UNTIL
THE AGENT DECIDES TO STOP

SELECT A POSITION SELECT AN AMINO ACID SELECT TO CONTINUE
OR STOP DESIGN

Figure 1: Protein design expressed as a Markovian Decision Process. Figure shows the iterative problem
formulation, where the first state is initialized with a sequence to be mutated by the RL agent. Here we depict
the sequential action space used by SPPO, where the policy is factorized over the decisions of which position to
select, what to change it to, and when to stop mutating.

We formulate the design of high affinity binder proteins as a Markov Decision Process (MDP)
(S,A, T , R, γ) where S is the state space,A the action space, T : S×A → S the transition function,
R the reward signal and γ a discount factor. One episode corresponds to the design of a protein. An
environment state represents a protein, i.e. a sequence of amino acids s =

(
s1, s2, . . . , sn

)
, where si

refers to the residue at position i and n is the length of the complete sequence. Each amino acid is
chosen among a set of m = 20 possible proteinogenic types. A possible formulation (e.g. [3]), is to
initialize each episode with a blank sequence and then generate each amino acid progressively. In this
case, the agent chooses n times between m actions during each episode. At the end of an episode, the
final protein obtained is scored. The resulting reward signal is sparse, i.e non-zero only at the end of
an episode. The reward is normalized to the interval R ∈ (−1.0, 1.0], with ACE2 set as a baseline at
RACE2 = 0. In our work, we refer to this formulation as the generative approach.

In this study, we propose another formulation: the iterative approach. In this setting, the agent begins
each episode with an initial sequence. The agent then mutates the sequence by selecting positions
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to change, as well as the new residues to change them to, in such a way that there is always a valid
sequence to be scored. As a result, the mutation process can be stopped at any moment, potentially by
the agent itself (see figure 1). The choice of initial sequence can be arbitrary, though we choose either
the native human ACE2 protein sequence, or randomly perturbed versions thereof. Prior initialization
conditioned on ACE2 enables the agent to prioritize exploration around the subset of states that
represent close mutations of the native ACE2 protein sequence, which is the only protein known to
bind to SARS-COV-2 with certainty.

Contrary to [3], our target function is not learned, but computed directly from simulation. Protein-
protein interactions are driven by a large set of intertwined interactions, which are practically
impossible to estimate from protein sequence space alone. Our scoring function therefore estimates the
change of Gibbs free energy resulting from the action chosen by the agent. This is computed through
the combination of knowledge-based statistical potential [2], and prior knowledge of experimentally
observed protein complex conformations derived from Protein Data Bank [5], as well as binding
target variability [10]. The score reflects the binding-oriented problem formulation, which expressly
does not capture the entire complexity of the physiology of virus adhesion to the cell.

4 Methods

Reinforcement Learning Algorithms For both formulations of the protein design problem, we
make use of policy gradient methods [23] to directly optimize a stochastic policy parametrized by
vector θ, πθ : S → DA where DA is the space of distributions over the action space A. The iterative
formulation defined in section 3, also allows the problem to be solved using sequential action spaces,
i.e. the agent must select not one action, but a sequence of p actions. At each step, the agent must
first choose a position in the sequence, then select an amino acid to place, given the chosen position,
and finally, it must decide whether to take the action to stop the design. When the agent chooses
to stop, the episode terminates and the resulting sequence is scored. At each time step, the three
actions are selected autoregressively, each one depending on the choices of the previous ones. The
factorization of the action space helps to reduce the number of parameters of the policy network. It
also improves decision interpretability and eases the learning by splitting one potentially extremely
large distribution into several smaller conditional distributions. Empirically, it displays improved
exploration capacities as well.

We implement the policy gradient method using Proximal Policy Optimization (PPO) [20], and
extend PPO to the sequential setting for the sequential action space configurations. We call the
resulting algorithm Sequential PPO (SPPO). We show that SPPO learns in a few time-steps to start
from random perturbations of the ACE2 sequence and make only a few changes in its amino acids to
obtain good scores.

Neural network architecture Attention-based model architectures, such as Transformers [25]
have recently achieved state-of-the-art results in NLP across various tasks [8, 30, 7]. In our work, we
leverage the ability of transformer models to process sequential information and extract long-range
dependencies. The transformer backbone is followed by the appropriate heads, e.g. Policy and Value
heads for (S)PPO, as shown in figure 3. A complete description of the network architecture alongside
its hyper-parameters and the input specifications can be found in section A.1 of the supplementary
materials.

5 Experimental results

On both formulations of the protein design problem, the RL agents exceed the performance of a set
of benchmark methods based on simulated annealing, Monte-Carlo sampling, and random sampling.
These results are shown in Figure 2 and in Appendix A.4. For the iterative formulation of the problem,
we note that the process of mutating sequences initialized from native ACE2 introduces a source
of stability. This formulation reduces the variance in the mean episodic reward by two orders of
magnitude, compared to the generative formulation of the problem. While both PPO and SPPO
achieve comparable scores, SPPO yields candidate designs above the threshold of native ACE2 in a
much more sample efficient manner. The factorization of the action space into sequential conditional
policies enables more informative gradient updates during training, compared to those received in the
joint action space configuration implemented by PPO. Indeed, autoregressive policies can offer more
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Figure 2: Average and maximum return across episodes of protein design, demonstrating the performance of
PPO and SPPO reinforcement learning algorithms on the generative and iterative formulations of the protein
design MDP. Reward, R ∈ (−1.0, 1.0]. Native ACE2 is benchmarked with a score of RACE2 = 0. In all cases,
RL agents learn to design superior binders than the native ACE2 and outperform baseline agents based on
sampling.

consistent exploration in RL tasks, especially when there are sparse rewards [15]. This results in a
5-10x reduction in the number of steps required to surpass the native ACE2 score.

6 Design Validation

We compared the best-scoring designs of our method to designs previously reported in [13, 9]. We
applied the industry-standard ROSETTA remodel [12] method to the same reference structures, and
optimize the same positions as in this work. To ensure a conservative comparison with our results,
we devoted ten times more CPU hours to the Rosetta designs than recommended by [11], starting
the designs from multiple, alternative conformations, including these derived from experimental
structures, these used internally in our solution, and their variants obtained by conformational
perturbation and minimization. While this protocol diverges from state-of-art ROSETTA approaches,
it allows us to estimate the computational effort needed to tackle such a problem with no external
expert input. Therefore we claim that, given the typical computation time recommended for such
tasks, reinforcement learning delivers better results with greater diversity than traditional methods (see
Table 3).

Knowledge-based assessment For each design candidate (either ours, published, or generated by
ROSETTA), we construct a pool of structural models. Each model is subject to the ROSETTA
InterfaceAnalyser protocol [22]. This shows that our designs both bind ACE2 (see annex B.1),
and retain sufficient similarity to human ACE2 receptor, to evade recognition by immune system, and
to make them plausible as drop-in therapeutics. In terms of the Gibbs free energy (δG) of binding,
our designs, proposed in an entirely automated manner, prove to be substantially more competent
binders than human ACE2. We note, that it is our method that proposed the best performing design in
terms of δG in the entire benchmark. The design proposed in [13] outperforms us in terms of EvoEF2
and RW+ metrics, however these are the metrics authors have been explicitly optimizing, while we
have not been optimizing for binding explicitly.

Molecular dynamics simulations The analysis above relies on a knowledge-based potential and,
as such, involves theoretically optimized structures, which can lead to overfitting. To assess the
binding performance of newly designed proteins, we run a series of unrestrained, molecular dynamics
simulations using the industry standard, GPU-aided GROMACS 2018.4 [1, 17, 19] software package.
In a 50ns simulation (on average over 5650 core-hours per simulation) the native human ACE2 does
not bind particularly strongly to SARS-COV-2 RBD. After 15ns of simulation time, partners drift
apart, to fully disconnect by 20 ns (see Figure 5). We see evidence of complex reformation by the end
of the trajectory, as partners come back together. Our designs do not exhibit such a behavior and are
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more stable, as measured by the trajectory RMSD to the bound conformation. Even if started from
suboptimally bound pose, partners with newly designed interfaces quickly form an transitory complex
and remain stable throughout the simulation. The analysis of molecular dynamics trajectories indicate
that our designed proteins bind SARS-COV-2 RBD in a stronger, more affine manner. They result
in much more stable complexes as well. This achieves the goal of tight binding for coronavirus
neutralization.

7 Conclusion

In this paper we introduce a novel framework for protein design by combining reinforcement learning
with computational structural biology and apply it to develop a candidate cure for Covid-19. First,
we build a fast reward scoring function that leverages insights from co-crystal structures of the
SARS-COV-2 spike protein complexed with the human ACE2. Second, we experiment with several
RL algorithms and demonstrate convergence. In particular, we design a sequential version of the
Proximal Policy Optimization algorithm for the protein design task, which we name Sequential
PPO (SPPO). SPPO displays improved sample efficiency compared to regular PPO and quickly
obtains promising ACE2-based protein binders. Third, we subject our best designs to a range of
evaluations and report favourable in-silico knowledge-based metrics, including for metrics not used
in our scoring protocol. Our designs are competitive with those published by well-established groups
in computational structural biology. Finally, full scale molecular dynamics simulations confirm
that our candidate therapeutics are more stable than the native human ACE2 and tightly bind to the
SARS-COV-2 RBD, suggesting our candidate cures are likely to perform their intended task in vivo.
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Supplementary material

We give more details about the algorithms we use in our methods, about the baselines we compare to
and about our experimental details in the following sections3.

A Reinforcement Learning Methods

A.1 Neural network architecture

The input of the neural network is a n× f sequence, consisting of f = 10 features for each amino
acid4. Those features form the amino acid vocabulary and correspond to the Atchley factors [4], a
small set of highly interpretable numeric patterns of amino acid variability. The sequence containing
n amino acids is embedded as a sequence of n corresponding vectors in Rd, where d = 512. Each
vector is the sum of a learned token embedding and a sinusoidal positional embedding as in the
original Transformer architecture [25]. The embedded sequence is then processed by a GTrXL model
[18], comprising 5 blocks, each composed of a self-attention operation followed by a position-wise
multi-layer network. Each block preserves the embedding dimension of each sequence element. The
associated hyper-parameters can be found in table 1 and as well as those defining the appropriate
policy and value heads for PPO and SPPO. A schema is shown in figure 3 with the policy and value
heads for PPO.

REWARD

AGENT

ENVIRONMENTEMBEDDING DECISION

LOSS

STATE st

ACTION

st +1

VALUEDENSE

POLICYDENSE

NEURAL NETWORK
PARAMETERS

TRANSFORMER

Figure 3: Protein sequence design schema of the reinforcement learning agent and environment.

A.2 Reward function

A key aspect of this work is that the reward function can directly output scores from ROSETTA
simulations, relatively quickly: in less than 1 minute and without the need of a proxy. Each design is
evaluated in a series of biologically plausible scenarios, which reflect the current state of knowledge of
SARS-COV-2 RBD-ACE2 structures [27], [16], [29], [21] and prior knowledge on the biochemically
relevant interactions between partners. This comprises effective use of diverse structural information,
leveraging experimental information on evolutionary constraints on the diversity of the partners, as
well as the data on the genetic diversity of the population. The function is designed to be progressively
more accurate and has a built-in early stop criteria. Therefore, designs that are highly unlikely to result
in high scores, are evaluated in a faster and more cursory manner, while the bulk of computational
resources are devoted to fine-grained evaluation of prospectively successful designs.

The reward function is fully deterministic and provided the same score given the same input. This
permitted for in-memory reward caching. For the memory cache, we use Redis, an in-memory
key-value database. Depending on the RL algorithm, this allowed speedups of up to 3 times.

3Additional videos and illustrations available at https://sites.google.com/view/covid-rl-design.
4When the generative formulation is used, the missing sequence elements are padded with zeros.
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We ran our simulations in machines ranging from 96 cores to 224 cores. In these conditions, an
average distributed reward calculation would take around 1 minute for our ROSETTA configuration.
If the score was previously calculated the cache would provide the reward in a few milliseconds.

A.3 Hyperparameters

Notation Description Value

PPO, SPPO
γ discount factor 0.99
train batch size train batch size 4000
sgd batch size sgd batch size 128
lr learning rate 0.0001
clip param PPO clip param 0.3

Shared Neural Network
d Embedding dimension 512
blocks Number of stacked GTrXL blocks 5
hidden units Hidden units of the Position-wise MLP 512
activation Non-linearity of the Position-wise MLP ReLU

PPO Model
actor head hidden layers size 256/256
critic head hidden layers size 256/256

SPPO Model
context dim representation of observations passed to autoregressive policies 32
shared layers hidden layers size 256
autoregressive layers hidden layers size 256
critic head hidden layers size 256/256

Table 1: Hyperparameters Table.

A.4 Discussion of Reinforcement Learning Results

Results: Reinforcement Learning vs. Baseline Methods

Algorithm Env. Rmax Ravg Steps to
Rmax(10

3)
Rmax > 0

(103 steps)
Ravg > 0

(103 steps)
PPO gen 0.069 0.063 398 94 202.5
PPO iter 0.071 0.067 317 18 72.5
SPPO iter 0.067 0.063 227 9.5 46.7
Sim. Annealing iter 0.044 - - - -
Rosetta MC iter 0.056 0.0094 - - -
Random gen -0.020 -0.12 - - -

Table 2: Summary statistics for RL algorithms compared to benchmark methods. Rewards displayed
for R ∈ (−1.0, 1.0]. Native ACE2 benchmark score is 0: RACE2 = 0. All supplied RL figures are
averaged over 3 random seeds. Simulated annealing performed with temperature 1% and 10%, best
results shown here (1%).

We note in table 2, the superior performance of the RL methods over the benchmark methods, as
measured by Rmax and Ravg. The extension of PPO-generative to SPPO-iterative reduces the number
of steps required to generate candidate protein sequences that outperform the native ACE2 at binding
to SAR-CoV-2.
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B Additional experimental details

B.1 Results per assessment structure

Each of the tables represents the same designs, in the same order, scored according to diverse criteria,
scored per each assessment target, and in terms of a mean of all the columns.

Relative binding affinity: δG per 100 Å2

Method t1 t2 t3 t4 t5 t6 t7 t8 t9 mean

PPO -4.7 -4.1 -7.4 -4.2 -4.4 -6.9 -3.8 -4.4 -4.6 -5.0
PPO -4.6 -4.0 -4.9 -4.7 -8.4 -6.7 -3.5 -3.5 -4.8 -5.0
PPO -4.5 -3.7 -6.4 -5.7 -4.2 -6.7 -4.1 -3.5 -4.5 -4.8
SPPO -4.1 -3.6 -4.8 -4.6 -4.9 -4.6 -4.9 -3.6 -5.0 -4.5
SPPO -4.5 -3.9 -4.9 -4.5 -4.4 -4.5 -3.3 -3.6 -4.6 -4.2
SPPO -4.1 -3.6 -4.9 -4.3 -4.1 -6.0 -3.4 -3.4 -4.5 -4.3
Rosetta design -4.5 -4.0 -6.9 -4.8 -4.3 -4.6 -3.8 -3.7 -5.1 -4.6
Rosetta design -4.5 -4.1 -4.3 -6.3 -3.4 -6.6 -3.9 -4.0 -3.9 -4.5
Rosetta design -4.2 -3.8 -5.0 -4.3 -6.7 -4.1 -4.1 -3.9 -4.5 -4.5
Native -4.7 -3.9 -5.3 -4.6 -5.1 -4.6 -3.4 -3.2 -5.1 -4.4
Han&Kral -4.0 -4.2 -4.0 -6.3 -4.4 -4.9 -6.9 -4.0 -4.1 -4.7
Huang -4.0 -3.5 -4.1 -3.9 -4.5 -6.4 -4.1 -4.1 -6.6 -4.6

Figure 4: Objective quality comparison between discussed methods. Better designs have lower scores
(i.e are in the bottom left). Measures of binding energy: δG for the best design (Best) and mean of
top 20% designs in terms of our selection protocol (Good) indicate high affinity. Energy per residue
[22] is an estimate of the overall quality of the model. The evoEF2 metric is an independent estimate
of binding energy [14]. With respect to every metric (except for energy per residue, which can be
alleviated by further minimization), our designs outperform the other methods, despite not optimizing
any of them explicitly.

CORE-HOURS UNIQUE GOOD DESIGNS GOOD DESIGNS
(TOTAL) DESIGNS DESIGNS PER CORE-HOURS PER CORE-HOURS

RLDESIGN (OURS) 1,500 1604 54 1 0.037
ROSETTADESIGN 40,000 1189 11 0.03 0.00027

Table 3: Compute efficiency. Within a much shorter execution time, our solution delivers 50% more
unique designs than ROSETTA and proposes five fold more designs that prove to be better binders
than ACE2.
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Absolute binding affinity: δG

Method t1 t2 t3 t4 t5 t6 t7 t8 t9 mean

PPO -81.5 -58.3 -120.4 -75.0 -73.9 -118.4 -40.5 -56.7 -83.6 -78.7
PPO -71.1 -60.4 -86.0 -70.7 -117.1 -111.6 -45.4 -52.8 -80.2 -77.3
PPO -75.1 -64.4 -113.2 -97.1 -70.7 -109.4 -50.4 -58.6 -79.0 -79.8
SPPO -67.7 -61.8 -85.8 -77.5 -91.9 -79.7 -42.4 -46.7 -89.0 -71.4
SPPO -73.7 -62.4 -89.5 -75.6 -74.9 -74.3 -49.8 -50.4 -80.5 -70.1
SPPO -69.4 -55.4 -85.6 -73.9 -63.6 -98.7 -42.8 -44.2 -81.3 -68.3
Rosetta design -77.5 -64.7 -111.3 -80.7 -74.5 -79.2 -64.0 -53.2 -88.7 -77.1
Rosetta design -74.2 -65.3 -73.8 -105.2 -59.7 -109.2 -49.5 -43.0 -70.4 -72.3
Rosetta design -69.6 -59.0 -88.4 -70.3 -104.6 -68.3 -53.1 -52.7 -78.3 -71.6
Native -79.0 -63.9 -88.5 -78.1 -90.0 -76.3 -41.8 -45.7 -89.3 -72.5
Han&Kral -67.6 -57.7 -66.1 -89.9 -76.1 -86.1 -80.8 -46.7 -75.1 -71.8
Huang -62.9 -57.8 -75.1 -58.4 -78.3 -99.7 -41.3 -58.5 -115.6 -71.9

Absolute binding affinity: evoEF2

Method t1 t2 t3 t4 t5 t6 t7 t8 t9 mean

PPO -49.0 -35.8 -40.0 -47.1 -49.2 -47.2 -24.8 -37.7 -53.3 -42.7
PPO -45.8 -33.4 -45.1 -46.0 -44.9 -47.8 -29.3 -29.0 -52.1 -41.5
PPO -43.0 -37.2 -40.4 -41.4 -41.7 -45.3 -29.7 -36.0 -50.1 -40.5
SPPO -53.3 -33.4 -50.6 -53.9 -58.8 -57.5 -34.9 -29.5 -59.4 -47.9
SPPO -49.4 -37.0 -50.6 -53.7 -56.1 -56.3 -34.0 -35.8 -59.0 -48.0
SPPO -54.7 -34.6 -50.1 -54.4 -58.2 -60.1 -23.9 -28.5 -65.9 -47.8
Rosetta design -57.0 -38.9 -51.9 -52.6 -54.8 -53.8 -38.8 -38.3 -59.3 -49.5
Rosetta design -46.0 -38.1 -40.4 -50.0 -55.8 -45.6 -33.1 -28.3 -53.8 -43.5
Rosetta design -45.8 -38.8 -49.0 -49.9 -45.0 -43.2 -27.5 -38.1 -53.2 -43.4
Native -57.0 -37.0 -49.8 -54.6 -56.5 -59.3 -33.3 -31.0 -60.6 -48.8
Han&Kral -45.9 -39.2 -41.4 -39.1 -52.5 -57.0 -36.6 -34.3 -52.0 -44.2
Huang -46.7 -38.6 -59.7 -48.8 -59.4 -51.4 -31.7 -43.4 -59.7 -48.8
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B.2 Molecular Dynamics

Figure 5: Example molecular dynamics simulation (duration 50ns, with 50 million time steps of 1 fs)
trajectory of the SARS-COV-2 spike protein (red) complexed with native ACE2 (blue) simulation
(top) and one of our top ranked designs (bottom). Left/center/right column: snapshots at 5ns/25/40 ns.
Native structure starts from an experimentally determined, bound position, promptly disassociates
from the protein and intermittently explores binding. In the bottom row, we demonstrate unrestrained
binding of the designed protein, which starts nearly unbound, that is is translated away from the
complex and rotated by a random small angle, then mimimized as a soluble monomer and translated
back to contact with the receptor. The new design starts forming biochemical contacts, and finally
forms a stable complex with the spike protein. Note that the simulation of the native complex cannot
be expected to be typical and is provided here for illustrative purpose only.

Figure 6: Interactions between chains in the native structure (left figures) and one of the good designs
(right figures). Heat maps depict contact maps of all interacting residues, protein structures visualise
the 3D interactions. Blue interactions are favorable and have negative energy, red – unfavorable. Not
only does the new design bind tighter, with more residues involved in binding, but also it has fewer
detrimental interactions.

For each of the methods, we have selected one design, assessed as the most suitable one by our
methodology (that is having the best binding and stability). On each of these structures, we have
performed a single run of molecular dynamics simulations.

These simulations have been performed using GROMACS 2018.4[1, 17, 19], with an atomistic
AMBER ff03 as a force field. Each of the low-energy poses of a new design based on native ACE2-
spike protein co-crystal structure has been fully solvated (with a three point water model - SPC/E) in
a cubic box with 20Åmargin. The choice of simulation parameters has not been benchmarked, but
each of them is a rational choice, according to the literature. We do not expect that the results of
simulation will be radically different, were we to make an other choice.

Each of the solvated systems has been minimized for the 1 ns (50,000 steps of 2 fs each), equilibrated
with respect to temperature and pressure for 1 ns each (with a modified Berendsen thermostat and
Parinello-Raman pressure coupling, respectively). Finally we simulated the system unrestrained for
200 ns, in line with the simulations previously reported in literature [9].

The simulations reveal (see Figure 7, that each of the trajectories is largely stable, with one of [13]
starting in a potentially frustrated state, but promptly settling into an energetically favorable pose.
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However, we have noticed that the pose based on the native state starts with a large amount of
potential energy, which is approximately 40% into the simulation converted into kinetic energy. This
corresponds to the complex disassociating. The final 10% of simulation, where both potential and
kinetic energy are low, illustrates the complex forming anew.

From molecular dynamics simulations, we can conclude, that each of the designs, be it proposed by
our method, or by others, is biophysically feasible and can result in a high-affinity binding.

Figure 7: Molecular dynamics. The plots illustrate the development of the energy of a simulated
system. As each of the systems comprises different number of atoms, with differently shaped periodic
box, we have offset each trajectory by its median value, thus 0 corresponds to the median value of
the observed energy. Large fluctuations represent a frustrated, dynamic system, low – a system at
equilibrium. We note, that – with exception of the native structure – every design appears to settle in
a comfortable energy well.
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