
Design-Bench: Benchmarks for Data-Driven
Offline Model-Based Optimization

Brandon Trabucco, Aviral Kumar, Young Geng, Sergey Levine
Department of Computer Science

UC Berkeley
Berkeley, CA 94720, USA

{btrabucco,aviralk,young.geng,sergey.levine}@berkeley.edu

Abstract

Black-box model-based optimization (MBO) problems, where the goal is to find a
design input that maximizes an unknown objective function, are ubiquitous in a
wide range of domains, such as the design of drugs, aircraft, and robot morphology.
Typically, such problems are solved by actively querying the black-box objective on
design proposals and using the resulting feedback to improve the proposed designs.
However, when the true objective function is expensive or dangerous to evaluate in
the real world, we might instead prefer a method that can optimize this function
using only previously collected data, for example from a set of previously conducted
experiments. This data-driven offline MBO setting presents a number of unique
challenges, but a number of recent works have demonstrated that viable offline
MBO methods can be developed even for high-dimensional problems, using high-
capacity deep neural network function approximators. Unfortunately, the lack of
standardized evaluation tasks in this emerging new field has made tracking progress
and comparing recent methods difficult. To address this problem, we present
Design-Bench, a benchmark suite of offline MBO tasks with a unified evaluation
protocol and reference implementations of recent methods. Our benchmark suite
includes diverse and realistic tasks derived from real-world problems in biology,
materials science, and robotics that present distinct challenges for offline MBO
methods. Our benchmarks, together with the reference implementations, are
available at sites.google.com/view/design-bench. We hope that our benchmark can
serve as a meaningful metric for the progress of offline MBO methods and guide
future algorithmic development.

1 Introduction

Automatically synthesizing designs that maximize a desired objective function is one of the most
important problems in many scientific and engineering domains. From protein design in molecular
biology [1] to superconducting material discovery in physics [2], researchers have made significant
progress in applying machine learning methods to such optimization problems over structured design
spaces. Commonly, the exact form of the objective function is unknown, and the objective values for a
novel design can only be evaluated by running either computer simulations or physical experiments in
the real world. The process of optimizing an unknown function is known as black-box optimization,
and is typically solved in an online iterative manner, where in each iteration the solver proposes
new designs and query the objective function for feedback in order to propose better design in the
next iteration [3]. In many domains however, the evaluation of the objective function is prohibitively
expensive, because it requires manually conducting experiments in the real world. In this setting,
one cannot simply query the true objective function to gradually improve the design. Instead, a
collection of past records of designs and their corresponding objective values might be available, and

Machine Learning for Structural Biology Workshop, NeurIPS 2020, Vancouver, Canada.

https://sites.google.com/view/design-bench/

therefore the optimization method must leverage the available data to synthesize the most optimal
design possible. This is the setting of data-driven offline model-based optimization.

Although online black-box optimization has been studied extensively, the offline MBO problem has
received comparatively less attention, and only a small number of recent works study offline MBO in
the setting with high-dimensional design spaces, where they utilize deep learning techniques [4, 5, 6].
This is partly due to the fact that methods for online design optimization cannot be easily applied in
the offline MBO setting. However, even with only a few existing methods, it is still hard to compare
and track the progress in this field, as these methods are proposed and evaluated on different tasks
with distinct evaluation protocols. To the best of our knowledge, there is no commonly adopted set of
benchmarks for offline MBO. To address this problem, in this paper we introduce a suite of offline
MBO benchmarks with standardized evaluation protocols. We include a realistic and diverse set
of tasks that spans a wide range of application domains, from synthetic biology to robotics. The
realism and diversity of the tasks is essential for the evaluation of offline data-driven model-based
optimization methods, as it measures the generality of the methods being evaluated across multiple
domains and verifies that they are not overfitting to a single task. Our benchmark tasks incorporate
a variety of challenging factors, such as high dimensional input spaces and sensitive discontinuous
objective functions, which help better identify the strengths and weaknesses of MBO methods.

Along with the benchmark suite, we also present reference implementations of a number of existing
offline MBO methods and baselines. We systematically evaluate them on all of the proposed
benchmark tasks and report our findings. A surprising discovery from our findings is that with
proper data normalization, the simple baseline method of learning an objective value predictor and
performing gradient ascent on its input outperforms several prior MBO methods in our benchmark.
We hope that our work can provide insight into the current progress of offline MBO methods and can
also serve as a meaningful metric to galvanize research in this area.

2 Offline Model-Based Optimization Problem Statement

The goal in offline model-based optimization is to optimize an unknown (possibly stochastic) objective
function f(x), provided access to a static dataset D = {(xi, yi)} of designs xi and a corresponding
measurement of the objective value yi. Similar to batch Bayesian optimization (BBO) [7], each
algorithm A is allowed to consume the dataset D, and is required to produce a set of K candidate
designs A(D,K) = {x∗i : i ∈ {1...K}}. These K candidates are evaluated under the ground truth
objective function f(x), and the best performing design is reported as the final performance value.
Abstractly, the objective for offline MBO is:

argmax
A

[P({f(x∗) : x∗ ∈ A(D,K)}, N)] , (1)

where P denotes the percentile function. Intuitively, this formulation ranks an offline MBO algorithm
using the N th percentile objective value obtained by it given a fixed evaluation budget of K−samples.
Common choices of N are 100, which represent the max objective value, and 50 which represents
the median objective value among the candidates.

What makes offline MBO especially challenging? The offline nature of the problem requires that
the algorithm A not be tuned by peeking into the ground truth objective f , and this makes the offline
MBO problem much more difficult than the online design optimization problem. One simple idea
to tackle this problem is to learn an objective proxy using the dataset, and then convert this offline
MBO problem into an online problem by treating the learned objective proxy as the true objective.
However, this idea may not work well, due to the intrinsic out-of-distribution nature of optimal
designs. First of all, in a number of practical MBO problems such as optimization over proteins or
robot morphologies, the designs with highest objective values in the dataset already lie on the tail
of the dataset distribution, since they are better than most other designs. In order to improve upon
the best designs, an optimization method needs to produce designs that are even further away from
the dataset distribution. For such out-of-distribution designs, is would be impossible to guarantee
that the learned objective proxy is accurate, and hence any powerful optimization method would
easily “exploit” the learned objective proxy and produce falsely promising designs that are drastically
overestimated by the learned objective proxy. This conflict between the out-of-distribution nature of
optimization and the in-distribution requirement of any learned model is indeed the core challenge of
offline MBO. This challenge is often exacerbated in real-world problems by the high dimensionality
of the design space and the sparsity of the available data, as we will show in our benchmark. A good

2

Task Dataset Size Design Dimensions Design Space Discrete Categories
GFP-v0 5000 238 Discrete 20
MoleculeActivity-v0 4216 1024 Discrete 2
Superconductor-v0 16953 81 Continuous N/A
HopperController-v0 3200 5126 Continuous N/A
AntMorphology-v0 12300 60 Continuous N/A
DKittyMorphology-v0 9546 56 Continuous N/A

Table 1: Overview of the tasks in our benchmark suite. Design-Bench includes a variety of tasks
from different domains with both discrete and continuous design spaces and 3 high-dimensional tasks
with > 200 design dimensions, making it suitable for benchmarking offline MBO methods.

offline MBO method needs to carefully balance the two sides of the conflict, producing optimized
designs that are not too far from the data distribution.

3 Related Work

While the extensive prior work on MBO, particularly Bayesian optimization, has made tremendous
progress both in terms of enabling intelligent active selection of query points [8, 9, 10, 11, 12] and
scaling up the dimensionality of Bayesian optimization methods [13, 14, 15], a significant number
of real-world problems may be approached more naturally as offline MBO problems, given the
availability of several datasets which contain designs annotated with their corresponding score values.
Offline MBO presents a new set up challenges, as we discuss below, and we believe that these
challenges require a new set of benchmarks that emphasize offline data and high-dimensional design
spaces.

Researchers working on either online active design optimization or offline model-based optimiza-
tion have collected various datasets of designs that can be used to build tasks for offline MBO.
sarkisyan2016GFP analyze the fluorescence of GFP proteins under blue and ultraviolet light, and
brookes2019conditioning use this dataset for optimization to find the protein with the highest fluo-
rescence value. ChEMBL [16] provides a dataset for drug discovery, where molecule activities are
measured against a target assay. hamidieh2018superconductor analyze the critical temperatures for
superconductors and provide a dataset to search for room-temperature superconductors with potential
in the construction of quantum computers. Some of these datasets have already been employed in
the study of offline MBO methods [5, 4, 6]. However, these studies use different set of tasks and
their evaluation protocols are highly field-specific, making it difficult to use for general algorithm
development. In our benchmark, we incorporate modified variants of some of these datasets along
with our own tasks and provide a standardized evaluation protocol. We hope that these tasks can
represent realistic MBO problems across a wide range of domains and that the standardized evaluation
protocol can facilitate development of new and more powerful offline MBO algorithms.

Recently, researchers have proposed several methods specifically for the completely offline MBO
problem. To make up for the fact that the true objective function is not available, these methods often
make use of some type of learned objective function as a proxy for the real one and a generative
model [17, 18] to capture the distribution of valid designs, especially for high dimensional design
spaces. [5] learns a objective value conditioned generative model to synthesize the designs with the
desired objective value. [4, 6] employ a variational autoencoder [17] to capture the distribution of
designs in the dataset and a learned neural network objective function model. In our benchmark, we
provide open-source reference implementations for these methods and systematically evaluate them
in all our tasks.

4 Design-Bench Benchmark Tasks
In this section, we describe the set of tasks included in our benchmark. We first provide an overview
of the tasks in Table 1. Each task in our benchmark suite comes with a dataset D = {(xi, yi)}, along
with an oracle objective function f which is to be utilized for for test time evaluation only. An offline
MBO algorithm should not query the oracle during training time, even for hyperparameter tuning.
While in some of the tasks in our benchmark, such as tasks pertaining to robotics – HopperController-
v0, DKittyMorphology-v0 and AntMorphology-v0, the oracle functions are evaluated by running

3

computer simulations to obtain the true objective values, in the other tasks, the true objective values
can only be obtained by conducting expensive physical experiments. While the eventual aim of
offline MBO is to make it possible to optimize designs in precisely such settings where querying the
groundtruth objective is challenging, requiring real physical experiments for evaluation makes the
design and benchmarking of new algorithms difficult and time consuming. Therefore, to facilitate
evaluation, following evaluation methodology in prior work [4, 6], and use models built by experts
as our oracle function. Such models are typically also learned models, but with representations that
are hand-designed, built-in domain-specific inductive biases and typically trained on much more
data than is made available for solving the offline MBO problem, which increases the chance that
this proxy “true function” can answer queries outside of the MBO training distribution. While this
approach to evaluation diminishes the realism of our benchmark, since these proxy “true functions”
may not always be accurate, we believe that this trade off is worth it to make benchmarking practical.
The main purpose of our benchmark is to facilitate the evaluation and development of offline MBO
algorithms, and we believe that it is important to include tasks in domains where the true objective
values can only be obtained via physical experiments, which make up a large portion of the real-world
MBO problems. For each task we discuss in this section, we provide a detailed description of the
data collection strategy and the data pre-processing strategy in Appendix A.

GFP-v0: protein fluorescence maximization. The goal of this task is to design a derivative protein
from the Aequorea victoria green fluorescent protein (GFP) that has maximum fluorescence, using
a real-world dataset mapping proteins to fluorescence collected by [19]. While we cannot exactly
evaluate any novel protein, we employ an expert Gaussian process regression model with a protein-
specific kernel built by [1] as the oracle function, following the convention of [4, 6]. This expert
model is built on a larger dataset than the one we use in this benchmark, making it relatively accurate
for proteins not in our dataset. The design space for GFP is discrete, consisting of a sequence of 238
categorical variables that can take one of 20 options, which corresponds to the choice of 238 amino
acids that make up the green fluorescent protein from 20 types of amino acid.

MoleculeActivity-v0: drug activity maximization. This task is taken from the domain of drug
discovery, where the goal is to design the substructure of a molecule that exhibits high activity
when tested against a target assay. The dataset we provide with this task was originally collected by
ChEMBL [16]. Again like for the GFP task, the true molecule activity against a target assay can
only be evaluated with physical experiments. Therefore, we leverage an oracle used recently for
meta-learning [20] and adopt the expert random forest regression model built by [21] as the oracle
function. From the ChEMBL data, we pick a single target assay to form the dataset of this task,
resulting in 4216 molecules in total. The design space for this task is a sequence of 1024 binary
categorical variables that correspond to the Morgan radius 2 substructure fingerprints, making this
task a high-dimensional task.

Superconductor-v0: critical temperature maximization for superconductor materials. The
Superconductor-v0 task is taken from the domain of materials science, where the goal is to design
a superconducting material that has a high critical temperature. Developing superconducting mate-
rials has immense practical value, especially for room-temperature superconductors, which could
greatly facilitate quantum computing. We adapt a real-world dataset used by materials scientists [2].
The dataset contains 21263 superconductors annotated with critical temperatures. Prior work has
employed this dataset for the study of offline MBO methods [4], and we follow their convention of
using an expert random forest model, detailed in [6], for our oracle function. The design space for
Superconductor-v0 is an 81-channel vector of continuous variables, which describe properties of the
material such as its atomic radius.

HopperController-v0: robot neural network controller optimization.
HopperController-v0 is a task created by us in the domain of robotics, where
the goal is to optimize weights of a neural network policy that maximizes
expected return on the Hopper-v2 task in OpenAI Gym [22]. While this goal
might look similar to that of reinforcement learning, it is important to note
that the formulation is entirely different. Unlike reinforcement learning, we
don’t have access to any form of trajectory data, neither by actively sampling
from the environment nor from a pre-collected dataset. Instead, we only have

a dataset of weights of a neural network controller and the corresponding return values. Therefore,
reinforcement learning methods cannot be applied to solve this problem. Unlike tasks introduced
before, we evaluate the true objective value of any design during dataset generation by running 1000

4

steps of simulation in the MuJoCo simulator. This horizon length is chosen so that the learning
problem is long-horizon, and difficult. The design space of this task is high-dimensional with 5126
continuous variables corresponding to the flattened weights of a neural network controller. The
dataset is collected by training a PPO reinforcement learning agent [23] and recording the agent’s
weights every 10,000 samples.

AntMorphology-v0 and DKittyMorphology-v0: robot morphology op-
timization. We created these two tasks to optimize the morphological
structure of two simulated robots: Ant from OpenAI Gym [22] and D’Kitty
from ROBEL [24]. For AntMorphology, the goal is to optimize the mor-
phology of an ant shaped robot, to run as fast as possible, with a pre-trained
neural network controller. For DKittyMorphology, the goal is to optimize
the morphology of D’Kitty, a quadrupedal robot, such that a pre-trained
neural network controller can navigate the robot to a fixed location. In this fashion, the goal for both
tasks is to recover a morphology with which the pre-trained controller is compatible. The variable
morphology parameters of both robots include size, orientation, and location of the limbs, giving us
60 continuous values in total for Ant and 56 for D’Kitty. To evaluate the ground truth value for a given
design, we run robotic simulation in MuJoCo [25] for 100 time steps, averaging 16 independent trials.
These parameters are chosen to reduce stochasticity, and allow the simulator to run in a minimal
amount of time.

5 Task Properties, Challenges, and Considerations
The primary goal of our proposed benchmark is to provide a general test bench for developing,
evaluating, and comparing algorithms for offline MBO. While in principle any online active design
optimization problem can be formulated into an offline MBO problem by collecting a dataset of
designs and corresponding objective measurements, it is important to pick a subset of tasks that
represent the challenges of real-world MBO problems in order to convincingly evaluate algorithms
and obtain insights about algorithm behavior. Therefore, several factors must be considered when
choosing the tasks, which we discuss next.

2.50 2.75 3.00 3.25

Protein fluorescence

0

1000

2000

3000

4000

5000

N
u

m
b

e
r

o
f

sa
m

p
le

s GFP-v0

4 6 8

Drug activity

0

200

400

600

800

N
u

m
b

e
r

o
f

sa
m

p
le

s MoleculeActivity-v0

0 50 100 150

Critical temperature

0

2000

4000

6000

N
u

m
b

e
r

o
f

sa
m

p
le

s Superconductor-v0

0 500 1000

Average return

0

500

1000

1500

2000

2500

N
u

m
b

e
r

o
f

sa
m

p
le

s HopperController-v0

Sampled uniformly Original

Figure 1: Histogram (frequency distribution) of objective values in the dataset compared to a uniform
re-sampling of the dataset from the design space. In every case, re-sampling skews the distribution of scores
to the left, suggesting that there exists a thin manifold of valid designs in the high-dimensional design space, and
most of the volume in this space is occupied by low-scoring designs.

Diversity and Realism. First of all, the tasks need to be diverse and realistic in order to prevent
offline MBO algorithms from overfitting to a particular problem domain and to expect that offline
MBO methods performing well on this benchmark suite would also perform well on other real-world
offline MBO problems. Design-Bench consists of tasks diverse in many respects: it includes both
tasks with discrete and with continuous design spaces, which have distinct implications for offline
MBO algorithms. Continuous design spaces, equipped with metric space and ordering structures,
could make the problem easier to solve than discrete design spaces. On the other hand, discrete
design spaces are finite and therefore the dataset coverage might be better than some continuous tasks.
A strong offline MBO algorithm needs to be able to handle both cases. Moreover, our tasks have
varying dimensionality, ranging from 56 to 5126 dimensions. And finally, our tasks span multiple
realistic domains ranging from biology and physical science to robotics.

High-dimensional design space. In many real-world offline MBO problems such as drug discov-
ery [16], the design space is high-dimensional and the valid designs lie on a thin manifold in this
high-dimensional space. Due to the curse of dimensionality, the available design data is often sparsely
distributed in the design space. This property poses a unique challenge for many MBO algorithms: to

5

Succeeds : θ = π 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1

Leg orientation θ

−400

−200

0

200

A
v
e
ra

g
e

re
tu

rn

DKittyMorphology-v0

Fails : θ = 3
4π

Figure 2: Highly sensitive landscape of the groundtruth objective function in DKittyMorphology-v0. A
small change in a single dimension of the design-space, for instance, by changing the orientation θ (x-axis) of
the base of the agent’s front right leg, the performance value (y-axis) of the agent is critically impacted. The
agent’s design is the original D’Kitty design and is held constant while varying θ uniformly from 3

4
π to π.

be effective on such problem domains, MBO methods need to strongly restrict optimization to a thin
manifold of the design space to be able to produce valid designs. Prior work [5] has noted that this can
be extremely hard in several cases. In our benchmark, we include the GFP-v0, MoleculeActivity-v0
and HopperController-v0 tasks with high-dimensional design spaces to capture this challenge. To
intuitively understand this challenge, we performed a study on the HopperController-v0 task in
Figure 1, where we sampled 3200 designs uniformly at random from the design space and plotted a
histogram of their objective values against those in the dataset we provide, that only consists of valid
designs. Observe the clear discrepancy in the objective values, where randomly sampled designs
attain objective values much lower than the dataset. This indicates that valid designs only lie on a
thin manifold in the design space and therefore we are very unlikely to hit a valid design by uniform
random sampling.

Highly sensitive objective function. Another important challenge that should be taken into con-
sideration is the high sensitivity of objective functions, where closeness of two designs in design
space need not correspond to closeness in their objective values, which may differ drastically. This
challenge is naturally present in practical problems like protein synthesis [1], where the change of a
single amino acid could significantly alter the property of the protein. The DKittyMorphology-v0 and
AntMorphology-v0 tasks in our benchmark suite are also particularly challenging in this direction.
To visualize the high sensitivity of the objective function, we plot a one dimensional slice of the
objective function around a single sample in our dataset in Figure 2. We see that with other variables
kept the same, slightly altering one variable can significantly reduce the objective value, making it
hard for offline MBO methods to produce the optimal design.

6 Algorithm Implementations In Design-Bench
To provide a baseline for comparisons in future work, we ran a number of recently proposed MBO
algorithms on each of our tasks. Since the dimensionality of our tasks ranges from 56 to 5126, we
chose methods that have been shown in prior work to handle both the case of offline training data (i.e.,
no active interaction) and high-dimensional inputs. To that end, we include MINs [5], CbAS [4], and
autofocusing CbAS [6] in our comparisons, along with a baseline naïve “gradient ascent” method that
approximates the true function f(x) with a deep neural network and then performs gradient ascent
on the output of this model. In this section, we briefly discuss these algorithms, before performing a
comparative evaluation in the next section.

Gradient ascent baseline. We evaluate a simple baseline that learns a model of the objective
function, f̂(x) and optimizes x against this learned model via gradient ascent. Formally, the optimal
solution x∗ generated by this method can be computed as a fixed point of the following update:
xt+1 ← xt + α∇xf̂(x)|x=xt . In practice we perform T gradient steps, and report xT as the final
solution. Such methods are notoriously susceptible to falling off-the-manifold of valid inputs since
nothing constrains the resulting xT to be on the manifold of valid-designs.

Conditioning by adaptive sampling (CbAS). CbAS learns a density model in the space of design
inputs, p0(x) that approximates the data distribution and gradually adapts it towards the optimized
solution x∗. In a particular iteration t, CbAS alternates between (1) training a variational auto-encoder
(VAE) [17] on a set of samples generated from the previous model Dt = {xi}mi=1;xi ∼ pt−1(·)
using a weighted version of the standard ELBO objective that puts a higher likelihood on estimated
high-scoring designs (i.e., designs that have a score beyond a certain pre-specified threshold), and (2)
generating new design samples from the autoencoder to serve asDt+1 = {xi|xi ∼ pt(·)}. In order to

6

Task Identifier D (best) MINs CbAS Autofocus Gradient ascent
GFP-v0 3.152 3.315 ± 0.033 3.408 ± 0.029 3.365 ± 0.023 2.894 ± 0.001
MoleculeActivity-v0 6.558 6.508 ± 0.236 6.301 ± 0.131 6.345 ± 0.141 6.636 ± 0.066
Superconductor-v0 73.90 80.23 ± 10.67 72.17 ± 8.652 77.07 ± 11.11 89.64 ± 9.201
HopperController-v0 1361.6 746.1 ± 636.8 547.1 ± 423.9 443.8 ± 142.9 1050.8 ± 284.5
AntMorphology-v0 108.5 388.5 ± 9.085 393.0 ± 3.750 386.9 ± 10.58 399.9 ± 4.941
DKittyMorphology-v0 215.9 352.9 ± 38.65 369.1 ± 60.65 376.3 ± 47.47 390.7 ± 49.24

Table 2: 100th percentile evaluations for baselines on every task. Results are averaged over 16 trials,
and the ± indicates the standard deviation of the reported performance.

Task Identifier D(50th) MINs CbAS Autofocus Gradient ascent
GFP-v0 3.121 3.135 ± 0.019 3.269 ± 0.018 3.216 ± 0.029 2.894 ± 0.000
MoleculeActivity-v0 5.876 5.806 ± 0.078 5.742 ± 0.123 5.759 ± 0.158 6.401 ± 0.186
Superconductor-v0 12.00 37.32 ± 10.50 32.21 ± 7.255 31.57 ± 7.457 54.06 ± 5.060
HopperController-v0 434.5 520.4 ± 301.5 132.5 ± 23.88 116.4 ± 18.66 185.0 ± 72.88
AntMorphology-v0 37.44 184.8 ± 29.52 267.3 ± 16.55 176.7 ± 59.94 318.0 ± 12.05
DKittyMorphology-v0 190.2 211.6 ± 13.67 203.2 ± 3.580 199.3 ± 8.909 255.3 ± 6.379

Table 3: 50th percentile evaluations for baselines on every task.

estimate the objective values for design samples from the learned density model pt(x), CbAS utilizes
separately trained models of the objective function, f̂(x), that are trained via supervised regression to
map an input xi to its objective value yi. This training process, at a given iteration t, can formally be
described as:

pt+1(x) := argmin
p

1

m

m∑
i=1

p0(xi)

pt(xi)
P (f̂(xi) ≥ τ) log pt(xi), where {xi}mi=1 ∼ pt(·). (2)

Autofocusing CbAS. Since CbAS uses a learned model of the objective function f̂(x) as a proxy for
the ground-truth function to iteratively adapt the generative model p(x) towards the optimized design,
the functionf̂(x) will inevitably be required to make predictions under shifting design distributions
pt(x). Since these learned predictions are used as ground-truth values, any inaccuracy in the learned
function can adversely affect the optimization procedure. Autofocused CbAS aims to correct for this
distribution shift by re-training f̂(x) (now denoted f̂t(x)) under the design distribution given by the
current model, pt(x) via importance sampling, which is then used by CbAS.

f̂t+1 := argmin
f̂

1

|D|

|D|∑
i=1

pt(xi)

p0(xi)
·
(
f̂(xi)− yi

)2
,

Model inversion networks (MINs). MINs learn an inverse map from the objective value to a design,
f̂−1 : Y → X by using objective-conditioned inverse maps, search for optimal y values during
optimization and finally query the learned inverse map to produce the corresponding optimal design.
These methods minimize a divergence measure Lp(D) := Ey∼pD(y)

[
D(pD(x|y), f̂−1(x|y))

]
, to

train such an inverse map. During optimization, MINs obtain the optimal y-value that is used to query
the inverse map, and obtains the optimized design by sampling form the inverse map.

7 Benchmarking Prior Methods

In this section, we provide a comparison of prior algorithms discussed in Section 6 on our proposed
tasks. For purposes of standardization, easy benchmarking, and future algorithm development, we
present results for all Design-Bench tasks in Table 2 and 3. As discussed in Section 2, we provide
each algorithm with a dataset, and allow the method to produceK = 128 optimized design candidates.
These K = 128 candidates are then evaluated with the oracle function, and we report the 100th

percentile and the 50th percentile performance among them averaged over 16 independent trials,
following the convention of prior offline MBO works [6].

Algorithm setup and hyperparameter tuning. Since our goal is to generate high-performing
solutions without any knowledge of the groundtruth, oracle function, any form of hyperparameter
tuning on the parameters of the learned model should respect the evaluation boundary. We provide

7

a recommended method for tuning each algorithm described in Section 6 that is fully offline. To
briefly summarize, for CbAS, tuning amounts to finding a stable configuration for a VAE, such that
samples from the prior distribution map to on-manifold designs after reconstruction. We empirically
found that a β-VAE was essential for stability of CbAS—and high values of β > 1 are especially
important for modelling high-dimensional spaces like that of HopperController-v0. As a general
task-agnostic principle for selecting β, we choose the smallest β such that the VAE’s latent space does
not collapse during importance sampling. Collapsing latent-spaces seem to coincide with diverging
importance sampling, and the VAE’s reconstructions collapsing to a single mode. For MINs, tuning
amounts to fitting a good generative model. We observe that MINs is particularly sensitive to the
scale of yi when conditioning, which we resolve by normalizing the objective values. We implement
MINs using WGAN-GP, and find that similar hyperparameters work well-across domains. For
Gradient Ascent, while prior work has generally obtained extremely poor performance for naïve
gradient-ascent based optimization procedures on top of learned models of the objective function, we
find that by normalizing the designs x and objective values y to have unit Gaussian statistics, and
by multiplying the learning rate α ← α

√
d where d is the dimension of the design space, a naïve

gradient ascent based procedure can perform reasonably well on all tasks, without any task-specific
tuning. For discrete tasks, only the objective values are normalized, and optimization is performed
over log-probabilities of designs. We then uniformly evaluate samples obtained by running 200 steps
of gradient ascent starting from the highest scoring 128 samples in each dataset.

0 25 50 75 100 125 150 175 200

Gradient ascent steps

0

500

1000

1500

2000

2500

A
v
e
ra

g
e

re
tu

rn

HopperController-v0

Gradient ascent (normalized)

Gradient ascent (unnormalized)

Results and discussion. The results for all tasks are provided in
Table 2 and 3. There are several interesting takeaways from these
results. First, these results indicate that there is no clear winner be-
tween the three prior methods MINs, CbAS and Autofocused CbAS,
provided they are all trained offline with no access to groundtruth
evaluation for any form of hyperparameter tuning. Second, some-
what surprisingly, the naïve gradient ascent baseline outperforms
most of these highly sophisticated MBO methods based on gen-
erative models in 5 out of 6 tasks (Table 2), especially on high-
dimensional tasks (e.g., HopperController-v0). This result suggests
that it might be difficult for the generative models used in prior
method to capture the distribution of the dataset. We conducted an ablation study to determine the
reasons behind the surprisingly good performance of the naïve baseline. We found that the identical
gradient-ascent baseline performed a factor 1.5x worse on HopperController-v0, when optimizing
in the space of unnormalized designs and objective values, indicating that normalization is key in
obtaining good performance with a naïve gradient ascent baseline.

Finally, we remark that the performance numbers for certain methods reported in Table 2 differ
from the performance reported by prior works on certain tasks This difference stems from the
standardization procedure employed in dataset generation (which we discuss in Appendix A), and the
usage of uniform hyperparameters to ensure task-agnostic hyperparameter selection.

8 Conclusion
While online model-based optimization methods have received a lot of attention, especially in
the Bayesian optimization community, offline model-based optimization is increasingly gaining
popularity as it carries the promise to be able to convert existing databases of designs into powerful
optimizers, without the need for any expensive online interaction. However, due to the lack of
standardized benchmarks and evaluation protocols, it has been difficult to accurately track the
progress in this field. To address this problem, we introduce Design-Bench, a benchmark suite of
offline MBO tasks that covers a wide variety of domains, and both continuous and discrete, low and
high dimensional design spaces. We provide a comprehensive evaluation of existing methods under
identical assumptions. The somewhat surprising efficacy of simple baselines such as naïve gradient
ascent suggests the need for careful tuning and standardization of methods in this area. We hope
that our benchmark will be adopted as the standard metric in evaluating offline MBO algorithms and
provide meaningful insight in future algorithmic development.

8

References

[1] W.-J. Shen, H.-S. Wong, Q.-W. Xiao, X. Guo, and S. Smale, “Introduction to the peptide
binding problem of computational immunology: New results,” Foundations of Computational
Mathematics, vol. 14, pp. 951–984, Oct 2014.

[2] K. Hamidieh, “A data-driven statistical model for predicting the critical temperature of a
superconductor,” Computational Materials Science, vol. 154, pp. 346 – 354, 2018.

[3] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine learning, vol. 2. MIT
press Cambridge, MA, 2006.

[4] D. H. Brookes, H. Park, and J. Listgarten, “Conditioning by adaptive sampling for robust design,”
arXiv preprint arXiv:1901.10060, 2019.

[5] A. Kumar and S. Levine, “Model inversion networks for model-based optimization,” arXiv
preprint arXiv:1912.13464, 2019.

[6] C. Fannjiang and J. Listgarten, “Autofocused oracles for model-based design,” arXiv preprint
arXiv:2006.08052, 2020.

[7] J. González, Z. Dai, P. Hennig, and N. Lawrence, “Batch bayesian optimization via local
penalization,” in Artificial intelligence and statistics, pp. 648–657, 2016.

[8] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct search: New perspectives on
some classical and modern methods,” SIAM review, vol. 45, no. 3, pp. 385–482, 2003.

[9] D. J. Lizotte, Practical bayesian optimization. University of Alberta, 2008.

[10] R. Y. Rubinstein and D. P. Kroese, The cross-entropy method: a unified approach to combinato-
rial optimization, Monte-Carlo simulation and machine learning. Springer Science & Business
Media, 2013.

[11] M. J. Powell, “Direct search algorithms for optimization calculations,” Acta numerica, pp. 287–
336, 1998.

[12] D. Whitley, “A genetic algorithm tutorial,” Statistics and computing, vol. 4, no. 2, pp. 65–85,
1994.

[13] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning
algorithms,” in Advances in neural information processing systems, pp. 2951–2959, 2012.

[14] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat,
and R. Adams, “Scalable bayesian optimization using deep neural networks,” in International
conference on machine learning, pp. 2171–2180, 2015.

[15] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the human out
of the loop: A review of bayesian optimization,” Proceedings of the IEEE, vol. 104, no. 1,
pp. 148–175, 2015.

[16] A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies, A. Hersey, Y. Light,
S. McGlinchey, D. Michalovich, B. Al-Lazikani, and J. P. Overington, “Chembl: a large-scale
bioactivity database for drug discovery,” Nucleic acids research, vol. 40, pp. D1100–D1107,
Jan 2012. 21948594[pmid].

[17] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[18] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems,
pp. 2672–2680, 2014.

[19] K. S. Sarkisyan, D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov,
D. N. Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, N. S. Bogatyreva, P. K. Vlasov,
E. S. Egorov, M. D. Logacheva, A. S. Kondrashov, D. M. Chudakov, E. V. Putintseva, I. Z.
Mamedov, D. S. Tawfik, K. A. Lukyanov, and F. A. Kondrashov, “Local fitness landscape of the
green fluorescent protein,” Nature, vol. 533, pp. 397–401, May 2016.

[20] H. Yao, L. Huang, Y. Wei, L. Tian, J. Huang, and Z. Li, “Don’t overlook the support set:
Towards improving generalization in meta-learning,” CoRR, vol. abs/2007.13040, 2020.

9

[21] E. J. Martin, V. R. Polyakov, X.-W. Zhu, L. Tian, P. Mukherjee, and X. Liu, “All-assay-max2
pqsar: Activity predictions as accurate as four-concentration ic50s for 8558 novartis assays,”
Journal of Chemical Information and Modeling, vol. 59, no. 10, pp. 4450–4459, 2019. PMID:
31518124.

[22] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba,
“Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” CoRR, vol. abs/1707.06347, 2017.

[24] M. Ahn, H. Zhu, K. Hartikainen, H. Ponte, A. Gupta, S. Levine, and V. Kumar, “ROBEL:
RObotics BEnchmarks for Learning with low-cost robots,” in Conference on Robot Learning
(CoRL), 2019.

[25] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
IEEE, 2012.

[26] A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal, C. Hesse,
O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor, and Y. Wu, “Stable
baselines.” https://github.com/hill-a/stable-baselines, 2018.

[27] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor,” in ICML, 2018.

10

https://github.com/hill-a/stable-baselines

Appendices
A Data Collection

In this section, we detail the data collection steps used for creating each of the tasks in design-bench.
We answer (1) where is the data from, and (2) what pre-processing steps are used?

A.1 GFP-v0

The GFP task provided is a derivative of the GFP dataset [19]. The dataset we use in practice is
that provided by [4] at the url https://github.com/dhbrookes/CbAS/tree/master/data. We
process the dataset such that a single training example consists of a protein represented as a tensor
xGFP ∈ {0, 1}238×20. This tensor is a sequence of 238 one-hot vectors corresponding to which amino
acid is present in that location in the protein. We use the dataset format of [4] with no additional
processing. The data was originally collected by performing laboratory experiments constructing
proteins similar to the Aequorea victoria green fluorescent protein and measuring fluorescence.

A.2 MoleculeActivity-v0

The MoleculeActivity task is a derivative of a much larger dataset that is derived from ChEMBL [16],
a large database of chemicals and their properties. The data, similar to GFP, was originally collected
by performing physical experiments on a large number of molecules, and measuring their activity
with a target assay. We have processed the original dataset presented in [21], which consists of more
than one million molecules and 11,000 assays, into a smaller scale task with 4216 molecules and
a single assay. We select this assay by first calculating the number of unique scores present in the
dataset per assay, and sorting the assays by the number of unique scores. We select assay 600885
from [21]. This particular assay has 4216 molecules after pre-processing. Our pre-processing steps
include converting each molecule into a one-hot tensor xMolecule ∈ {0, 1}1024×2. This is performed
by calculating the Morgan radius 2 substructure fingerprints of 1024 bits, which is implemented in
RDKit. This calculation requires the SMILES representation for each molecule, which is provided by
[21]. The final step of pre-processing, is to sub sample the dataset by defining a percentile used to
select and discard high-performing molecules, such that difficulty of the task is artificially increased.
We use a split percentile of 80 for MoleculeActivity in the experiments in this paper.

A.3 Superconductor-v0

Superconductor-v0 is inspired by recent work [6] that applies offline MBO to optimize the properties
of superconducting materials for high critical temperature. The data we provide in our benchmark is
real-world superconductivity data originally collected by [2], and subsequently made available to the
public at the url https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#.
The original dataset consists of superconductors featurized into vectors xSuperconductor ∈ R81. One
issue with the original dataset is that the largest value of a single dimension in the dataset is 22590.0,
which appears to cause learning instability. We follow [6] and normalize each dimension of the
design-space to have zero mean and unit variance. However, we deviate from the remaining pre-
processing steps in [6]. In order to promote task realism, we directly use the superconductivity data,
whereas [6] re-samples by collecting iid unit gaussian samples and labelling them with the task oracle
function. This causes the scores in the dataset to correspond exactly to the scores provided by the
oracle. No other domain in design-bench re-samples nor re-labels static data, so we omit it here for
consistency.

A.4 HopperController-v0

The HopperController task is one that we provide ourselves. The goal of this task is to design a set of
weights for as neural network policy, in order to achieve high expected return when evaluating that
policy. The data collected for HopperController was taken by training a three layer neural network
policy with 64 hidden units and 5126 total weights on the Hopper-v2 MuJoCo task using Proximal
Policy Optimization [23]. Specifically, we use the default parameters for PPO provided in stable

11

https://github.com/dhbrookes/CbAS/tree/master/data
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#

baselines [26]. The dataset we provide with this benchmark has 3200 unique weights. In order to
collect this many, we run 32 experimental trials of PPO, where we train for one million steps, and
save the weights of the policy every 10,000 environment steps. The policy weights are represented
originally as a list of tensors. We first traverse this list and flatten each of the tensors, and we then
concatenate each of these flattened tensors into a single training example xHopper ∈ R5126. The result
is an optimization problem over neural network weights. After collecting these weights, we perform
no additional pre-processing steps. In order to collect scores we perform a single rollout for each x
using the Hopper-v2 MuJoCo environment. The horizon length for training and evaluation is limited
to 1000 simulation time steps.

A.5 AntMorphology-v0 & DKittyMorphology-v0

Both morphology tasks are collected by us, and share methodology. The goal of these tasks is to
design the morphology of a quadrupedal robot—an ant or a D’Kitty—such that the agent is able to
crawl quickly in a particular direction. In order to collect data for this environment, we create variants
of the MuJoCo Ant and the ROBEL D’Kitty agents that have parametric morphologies. The goal is
to determine a mapping from the morphology of the agent to the average return that an agent trained
for a particular intended morphology achieves. We implement this by pre-training a neural network
policy using SAC [27]. For both the Ant and the D’Kitty, we train agents for up to three million
environments steps, and a maximum episode length of 1000, with all other settings as default. These
agents are pre-trained for a fixed gold-standard morphology—the default morphology of the Ant
and D’Kitty respectively. Each morphology task consists of samples obtained by adding Gaussian
noise with standard deviation 0.02 for Ant and 0.01 for DKitty times the design-space range to the
gold-standard morphology. We label each sampled morphology by averaging the return of 16 rollouts
of length 100 of an agent with that morphology.

B Oracle Functions

We detail oracle functions for evaluating ground truth scores for each of the tasks in design-bench. A
common thread among these is that the oracle, if trained, is fit to a larger static dataset containing
higher performing designs than observed by a downstream MBO algorithm.

B.1 GFP-v0

GFP-v0 uses the oracle function from [4]. This oracle is a Gaussian Process regression model with a
protein-specific kernel proposed by [1]. The Gaussian Process is fit to a larger dataset than the static
dataset packaged with GFP-v0, making it possible to sample a protein design that achieve a higher
score than any other protein seen during training. The oracle score for GFP-v0 is implemented as the
mean prediction of this Gaussian Process.

B.2 MoleculeActivity-v0

Following the procedure set by [21], the oracle function we use for MoleculeActivity-v0 is a random
forest regression model. In particular, we use the RandomForestRegressor provided in scikit-learn,
using identical hyperparameters to the random forest regression model used in [21]. The random
forest is trained on the entire task dataset. In practice, samples that score at most the 80th percentile
are observed by an MBO algorithm, which allows for sampling unobserved points that score higher
than the highest training point.

B.3 Superconductor-v0

The Superconductor-v0 oracle function is also a random forest regression model. The model we use
it the model described by [2]. We borrow the hyperparameters described by them, and we use the
RandomForestRegressor provided in scikit-learn. Similar to the setup for the previous two tasks,
this oracle is trained on the entire static dataset, and the task is instantiated with a split percentile.
Samples scoring at most in the 80th percentile are observed by an MBO algorithm, which allows for
sampling unobserved points that score in the unobserved top 20 percent.

12

B.4 HopperController-v0

Unlike the previously described tasks, HopperController-v0 and the remaining tasks implement an
exact oracle function. For HopperController-v0 the oracle takes the form of a single rollout using the
Hopper-v2 MuJoCo environment. The designs for HopperController-v0 are neural network weights,
and during evaluation, a policy with those weights is instantiated—in this case that policy is a three
layer neural network with 11 input units, two layers with 64 hidden units, and a final layer with 3
output units. The intermediate activations between layers are hyperbolic tangents. After building
a policy, the Hopper-v2 environment is reset and the reward for 1000 time-steps is summed. That
summed reward constitutes the score returned by the HopperController-v0 oracle. The limit of
performance is the maximum return that an agent can achieve in Hopper-v2 over 1000 steps.

B.5 AntMorphology-v0 & DKittyMorphology-v0

The final two tasks in design-bench use an exact oracle function, using the MuJoCo simulator. For
both morphology tasks, the simulator performs 16 rollouts and averages the sum of rewards attained
over them. Each task is accompanied by a pre-trained neural network policy. To perform evaluation,
a morphology is passed to the Ant or D’Kitty MuJoCo environments respectively, and a dynamic-
morphology agent is initialized inside these environments. These environments are very sensitive to
small morphological changes, and exhibit a high degree of stochasticity as a result. To compensate
for the increased stochasticity, we average returns over 16 rollouts.

13

	Introduction
	Offline Model-Based Optimization Problem Statement
	Related Work
	Design-Bench Benchmark Tasks
	Task Properties, Challenges, and Considerations
	Algorithm Implementations In Design-Bench
	Benchmarking Prior Methods
	Conclusion
	Appendices
	Data Collection
	GFP-v0
	MoleculeActivity-v0
	Superconductor-v0
	HopperController-v0
	AntMorphology-v0 & DKittyMorphology-v0

	Oracle Functions
	GFP-v0
	MoleculeActivity-v0
	Superconductor-v0
	HopperController-v0
	AntMorphology-v0 & DKittyMorphology-v0

