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Abstract

X-ray crystallography has been the main approach for determining the 3D structure
of a protein to date, however it largely relies upon trialling large numbers of
constructs and conditions, which are both time consuming and costly, without any
guarantee of success. The large number of experimental structures that have been
solved to date, provides a rich resource to develop a sequence-based predictor
capable of accurately identifying crystalisable protein constructs, greatly reducing
the current necessary trial-and-error approach. As such, in recent years, there
have been an increasing interest from research community to analyze raw protein
sequences through extracting physio-chemical, functional and sequence-based
features from them. However, accurate estimation of protein crystallization still
remains a significant challenge. In this work, to predict protein crystallizability, we
have developed a novel sequence-based hybrid method that employs two separate,
yet fully automated, concepts for feature extraction. Specifically, we use a deep
convolutional neural network to extract descriptive features directly from sequences,
then fuse them with structural-and-physio-chemical driven features. We show that
such fusion leads to a higher performance. It is due to the fact that solely relying
on the structural-and-physio-chemical features would limit the description of the
sequence to the handcrafted features, assuming that such features are able to fully
describe the protein sequence. Conversely, deep learning is known to extract the
complex hidden pattern in the data that is hard to be observed by human. Thus,
fusing these two type of features leads to a better protein sequence descriptor and
consequently to higher performance. We evaluate our method on three publicly
available test sets, and show that our proposed DHS-Crystallize algorithm achieves
higher performance compared to using DCNN-deriven features, or structural-and-
physio-chemical driven features alone.

∗Structural Biology and Bioinformatics, Bio21 Institute, University of Melbourne, VIC, 3051, Australia.
†Structural Biology and Bioinformatics, Bio21 Institute, University of Melbourne, VIC, 3051, Australia
‡Department of Biochemistry, University of Cambridge, 80 Tennis Ct Rd, Cambridge CB2 1GA

Machine Learning for Structural Biology Workshop, NeurIPS 2020, Vancouver, Canada.



1 Introduction

The current process of determining the protein’s structure mainly involves X-ray crystallography.
However, such process is not only expensive with high attrition rate, but also has a very small success
rate (ranging between 2 to 10 percent only, with more than 70% of the expenses relating to failed
attempts) [13, 14].
To develop an alternative method, with less cost and attrition rate, number of previous studies
have proposed machine learning based techniques [9, 1, 17, 16, 15, 12]. Such methods share the
similar base-idea of analysing raw protein sequences and extracting physio-chemical, functional and
sequence-based features from them. However, accurate estimation of protein crystallization property
still remains a significant challenge.

Following the notable success of deep learning methods in many protein structure prediction [10,
15], and protein function prediction problems [7, 8, 10, 11]; recently a deep learning framework
(Deep-Crystal) for sequence-based protein crystallization prediction was proposed [5].

Deep-Crystal uses deep learning framework to identify proteins which can produce diffraction-quality
crystals, without manually engineering additional biochemical and structural features from sequence.
Their result showed that using the raw protein sequences as an input of a Deep Convolutional Neural
Network (DCNN) can outperform all other state-of-the-art sequence-based crystallization predictors.

Although the success of Deep-Crystal highlights the fact that such DCNN architect utilizes novel
and complex non-linear-features from the provided raw protein sequences, it has been shown that
a carefully handcrafted physio-chemical and sequence-derived features can result a much higher
prediction [4].

In this paper, we introduce a hybrid method that takes advantage of both DCNN-driven features and
physio-chemical-derived features (DHS-Crystallize) for accurate prediction of protein Crystallization.
We argue that fusing the features driven by DCNN with physio-chemical-derived features can play an
essential roll in providing better protein sequence descriptors. That is due to the fact that solely relying
on the structural-and-physio-chemical driven features would enforce the following assumption: such
features are able to fully describe the protein sequence. However, as deep learning is known to extract
the complex hidden pattern in the data that is hard to be observed by human. Thus, fusing these
two type of features would lead to a better protein sequence descriptor and consequently to higher
performance. Our primary contribution includes:

We show that the fusion of these two type of features lead to a higher performance.

• Fusing DCNN-driven with physio-chemical-derived features
• Performing Dimentionality reduction and training an optimized XGBoost modelby using

resulted features
• Validate the method on three separate publicly available blind datasets, and proving that the

proposed method can outperform the state-of-the-art methods

The rest of the paper is organized as following: Section.2 details the methodology behind DHS-
Crystallize by describing the Datasets, feature extraction, and XGBoost classifier. We then evaluate
our proposed DHS-Crystallize method and show the results in Section. 3. We also provide additional
analysis on the performance of our physio-chemical-derived features and introduce our future work
in 3. Finally, conclusion of our study is presented in Section.4.

2 Methodology

Predicting protein Crystallization is a binary classification task which requires an accurate labeling of
the proteins with either crystallizable or non-crystallizable. In this section, we detail our proposed
hybrid DHS-Crystallize (DHSC) method for predicting such property of proteins, based on their
sequences.

2.1 Dataset

Following the same protocol as [5], our proposed DHSC method is trained and evaluated on publicly
available datasets. For the training purpose, we have obtained the data from Wang et al. (2014) [17],
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Figure 1: DCNN-Driven Feature

that includes the total of 28731 proteins, with 5383 positive and 23348 negative samples.
Then, two blind test sets are obtained from SwissProt and Trembl databases (SP-final and TR-final),
respectively. SP-final includes 148 crystallizable proteins and 89 non-crystallizable protein sequences.
The second blind test set TR-final dataset, includes 374 crystallizable and 638 non-crystallizable.
Following the same protocol as [5], We further filter the sequences in training set and remove
all the crystalizable protein sequences with similarity >15%, and all the non-crystalizable protein
sequences with similarity >15%. That results in 2880 crystalizable protein sequences, and 8474
non-crystalizablle protein sequences in the final training set.

2.2 Feature Extraction

We start by extracting two type of features including DCNN-driven and Physio-Chemical-driven
features, then fuse them to create the final descriptive feature for the protein sequences. We show in
Section. 3 that the classifier built on the resulting features obtain better performance compared to
using either of the two type of features alone.

2.2.1 DCNN-driven features

To extract the DCNN-driven features, we employed the same DCNN architect described in [5] and
pull the output of the fully connected layer to extract descriptive deep-network-based features (Fig.
1). To cover the effect of initialisation on the DCNN-driven-features, the network was trained 10
times, and the resulting features were concatenated, which made the final DCNN-based feature to be
2500 in length.

2.2.2 Physio-Chemical-derived features

We have employed Protlearn software [3] to extract 21 Physio-Chemical-derived features from the
provided protein sequences, as following:

• Length (LN): The number of amino acids that a protein is comprised of
• Amino Acid Composition (AAC): The frequency of amino acids for each sequence in the

dataset
• AAIndex1-based physicochemical properties(AAindex1): A set of 20 numerical values

representing various physicochemical and biological properties4 of amino acids. The indices
are collected for each amino acid in the sequence.

• N-gram composition (NGram): We computes two set of features including both di- and
tripeptide composition of amino acid sequences.

• Shannon entropy (entropy): Computes Shannon entropy for each sequence in the dataset
as follows:

H(X) = −
20∑
i=1

P (xi) log2 P (xi) (1)

4ver.9.2 (AAindex1 release Feb, 2017)
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, where i denotes the amino acid and P (xi) denotes the probability of a given amino acid in
the sequence.

• Position-specific amino acids (posrich):Is a sparse vector where ones indicate the presence
of the given amino acid(s) at the specified position(s), and zeros indicate their absence.

• Sequence motifs (motifs):binary vector indicating the presence of a specified amino acid
sequence motif.

• Atomic and bond composition (ATC): calculates the sum of atomic and bond compositions
for each amino acid sequence. Specifically, atomic features are comprised of five atoms: C,
H, N, O, and S; and the bond features are comprised of the following: total bonds, single
bonds, and double bonds.

• Binary profile pattern (binary): the binary profile pattern for each amino acid sequence in
the dataset

• Composition of k-spaced amino acid pairs (CKAAP): the k-spaced amino acid pair com-
position of each sequence in the dataset.

• Conjoint triad descriptors (CTD): Initially developed to model protein-protein interactions,
it groups Amino acids into 7 different classes based on their dipoles and side chain volumes
(reflecting their electrostatic and hydrophobic interactions).

• Composition/Transition/Distribution - Composition (CTDC): The properties used here
include: hydrophobicity5, normalized van der Waals volume, polarity, polarizability, charge,
secondary structure, and solvent accessibility.

• Composition/Transition/Distribution - Transition (CTDT): Amino acids are categorized
into 3 groups based on their physicochemical properties. The properties used here are same
as those used for CTDC. This descriptor computes the frequency of transitions between
groups as follows:

t(i, j) =
nij − nji

N − 1
ij ∈ {12, 13, 23} (2)

, where nij and nji denote the frequency of transitions from group i to j and j to i, respectively,
in the sequence, and N is the sequence length.

• Composition/Transition/Distribution - Distribution (CTDD): Contains grouped distribu-
tion of physicochemical properties. Since there are 13 physicochemical properties, 3 groups
(see ctdc), and 5 distribution descriptors, the total dimensionality of this feature is 195.

• Normalized Moreau Broto autocorrelation 6 (moreau broto): Array containing Moreau-
Broto autocorrelation descriptors.

• Moran’sI autocorrelation descriptors (Moran):Moran’sI descriptors are computed as fol-
lows:

I(d) =
1

N−d
∑N−d

i=1 (Pi − P̄ ′)(Pi+d − P̄ ′)

1
N

∑N
i=1(Pi − P̄ ′)2

d ∈ {1, 2, ..., 30} (3)

where N , d, Pi , and Pi+d are the same as in the Moreau Broto autocorrelation; and P̄ ′ is
the considered property P along the sequence, which is defined as follows:

P̄ ′ =

∑N
i=1 Pi

N − d
(4)

• Geary’s C autocorrelation descriptors (Geary): Geary’s C descriptors are computed as
follows:

C(d) =

1
2(N−d)

∑N−d
i=1 (Pi − Pi+d)2

1
N

∑N
i=1(Pi − P̄ ′)2

d ∈ {1, 2, ..., 30} (5)

, are N , d, Pi, Pi+d, and P̄ ′ are the same as in the Moreau-Broto autocorrelation.

• Pseudo amino acid composition (PAAC): contains pseudo amino acid composition.

5For hydrophobicity, seven different groupings were used (based on different studies), which can all be found
in AAIndex1.

6based on AAIndex1
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Figure 2: The pipeline of proposed DHS-Crystallize method

• Amphiphilic pseudo amino acid composition (APAAC): Contains amphiphilic pseudo
amino acid composition

• Quasi-sequence-order (QSO: Contains QSO based on the Schneider-Wrede distance matrix.

2.3 Classification

For the classification purpose, we employ XGBoost algorithm [2], which is a saleable tree boosting
method widely used by data scientists, as shown to provide state-of-the-art results on many problems.
Tree boosting can be defined as a learning method designed to improve the classification of weaker
classifiers through repeatedly adding new decision trees to the ensembles.
It has been shown by previous research works [6], that in cases when the dimentionality of the
feature vector is very high, applying PCA before employing XGBoost can enhance both speed and
performance of the XGBoost method. After applying the feature extraction method detailed in Sec.
2.2, each protein sequence is transformed into a descriptive vector of size 13078.
Therefore, we start by applying PCA to reduce the dimentionality of the feature vector to 300. Then,
any classification technique can be employed; however, for the purpose of this study XGBoost was
selected to classify the protein sequences into crystalizable or non-crystalizable. To find the best
parameters for XGBoost, we have used 10% of the training data as validation set, and fine tuned our
method. That resulted in the following setting to train the XGBoost algorithm: we used Learning
rate of 0.01, maximum depth of 3, and the number of estimators of 500. To address the problem of
imbalance dataset, we put more weight on the positive class which has less samples in the dataset, by
setting the scale-pos-weight to 8.
The proposed pipeline is described in Fig. 2.

3 Result and Discussion

To evaluate the performance of the proposed DHS-Crystallize method, we have used three publicly
available separate blind test sets, described in Sec. 2.1, namely: TR, SP, and Balanced. The results
illustrated in bellow tables : Table 3, 2, and 1 shows that the proposed method outperforms state-
of-the-art sequence-based methods, and leads to improved performance compared to using either
Physio-Chemical-derived features or DCNN-driven features alone. Specifically, it leads to notable
improvement on TR test set.
to evaluate the performance of Protlearn, we used the same setting as the one for DHSC (detailed in
Section. 2.3). Thus, we started with reducing the features dimension to 300, which was following by
employing XGBoost (with same setting as described in 2.3).

Tabel. 1 details the performance of the proposed DHSC on TR test sets, and shows that the proposed
DHSC notably outperforms the state-of-the-art methods in protein crystallization on TR test set in
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Table 1: Results obtained for protein crystallization prediction on the TR test data
Methods Accuracy F1-Score Precision Recall

CrysaliseII 0.82 0.75 0.76 0.74

PPCPred 0.75 0.64 0.68 0.61

CrystalP2 0.58 0.58 0.46 0.77

DeepCrystal 0.84 0.78 0.80 0.76

Protlearn 0.63 0.66 0.50 0.99

DHSC 0.89 0.86 0.81 0.92

Table 2: Results obtained for protein crystallization prediction on the SP test data
Methods Accuracy F1-Score Precision Recall

CrysaliseII 0.75 0.78 0.86 0.72

PPCPred 0.67 0.67 0.86 0.55

CrystalP2 0.66 0.73 0.71 0.76

DeepCrystal 0.76 0.79 0.88 0.72

Protlearn 0.75 0.82 0.95 0.73

DHSC 0.77 0.79 0.96 0.67

Table 3: Results obtained for protein crystallization prediction on the balanced test data
Methods Accuracy F1-Score Precision Recall

CrysaliseII 0.8 0.8 0.83 0.77

PPCPred 0.67 0.62 0.74 0.53

CrystalP2 0.58 0.63 0.57 0.7

DeepCrystal 0.83 0.82 0.85 0.79

Protlearn 0.71 0.77 0.98 0.64

DHSC 0.84 0.83 0.87 0.80

accuracy, precision and F1-Score, but Protlearn achieves the highest Recall.
The performance of the method on SP is compared to other state-of-the-art algorithms and the results
are reported in Table. 2. It demonstrates that the proposed DHSC outperforms the state-of-the-art
methods in protein crystallization on SP test set in accuracy and precision, but Protlearn achieves the
highest F1-Score and CrystallP2 achieves the highest Recall.
Table. 3 illustrates that the proposed DHSC outperforms the state-of-the-art methods in protein
crystallization on balanced test set in accuracy and F-1 score, and Recall; but Protlearn achieves the
highest precision.
The above tables also prove that merging the features leads to a better performance compared to only
using Physio-Chemical-derived features or DCNN-driven features alone.

3.1 Additional Analysis and Future Work

As it can be observed from Table. 3, 2, and 1, protlearn performance is very imbalance when it comes
to comparing Precision and Recall. We further investigated and found that a different setting for both
PCA and XGboost can improve the Protlearn performance in all three TR, SP and Balanced dataset.
Specifically, following setting for PCA and XGBoost training algorithm led to highest protlearn
performance : reducing the feature dimension to 15, using Learning rate of 0.001, maximum depth of
7, the number of estimators of 2000, and scale-pos-weight=3.5 to address the imbalance data set. The
result of the analysis can be found in Figure. 3
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The result of using a lower dimension and optimized settings for the proposed DHS-Crystallize is yet
to be investigated. However, it can be observed from Figure. 3, that the proposed DHS-Crystallize
still have a better overall performance than fine-tuned Protlearn alone.

In addition, we find it non trivial to mention the most recent work on protein Crystallizability
(BCrystall) based on only extracting Physio-Chemical-derived features which led to very high
performance [4]. However, as the purpose of this study was to find if a hybrid model made of
fusing DCNN-driven features and physio-Chemical-derived features would lead to advancement
compared to using either of the features alone, we employed much simpler protlearn for computing
physio-Chemical-derived features. As an extension to this work, we plan to investigate the affect of

Figure 3: The best performance of protlearn

adding more physio-Chemical-derived features with respect to the latest investigation in BCrystall
paper.

4 Conclusion

In this work, we investigated the effect of fusing DCNN-driven features with physio-Chemical-derived
features on predicting crystalizability of the proteins. For this purpose, we have employed a deep
convolutional neural network with state-of-the-art performance (DeepCrystall), and extracted the fully
connected layer from the trained network to produce a descriptive feature for each protein sequence.
To eliminate the effect of initialisation, we used 10 separately trained network and concatenated all
the outputs. Then, we used protlearn software and extracted 21 physio-Chemical-derived features.
We merged the resulting feature vectors and employed PCA to reduce the dimentionaloity and
applied the resulting vectors to train XGBoost classifier. We have trained our model on a publicly
available dataset and evaluated the performance of the proposed method on three blind test sets (also
publicly available). The result indicates that the proposed method DHSC method outperforms all
state-of-the-art algorithms and improves the performance comparing to when only one set of features
are used.
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